

Welcome to qube’s documentation!

Contents:

	Features

	Credits

	Newbie Guide to QBiC software
	Required tools for Java/Groovy development

	What to do once you’ve generated your project using QUBE?

	Installation
	Stable release

	From sources

	General Usage
	create

	list

	info

	lint

	bump-version

	sync

	config

	upgrade

	External Python based projects

	Configure qube
	qube config all

	qube config general

	qube config pat

	Updating a personal access token

	Viewing the current configuration

	Create a project

	Getting information about available templates
	list

	info

	Linting your project
	qube linting

	Linting codes

	Bumping the version of an existing project
	Usage

	Configuration

	Syncing your project
	Overview

	Requirements for sync

	How to use sync?

	What command line options are available?

	What happens when my project gets synced?

	Configuring sync

	Upgrade qube

	Github Support
	Overview

	Branches

	Github Actions

	Secrets

	Issue labels

	Available templates
	cli-java

	gui-java

	lib-java

	lib-groovy

	service-java

	portlet-groovy

	portlet-groovy-osgi

	Shared FAQ

	Adding new templates
	Template requirements

	Step by step guide to adding new templates

	Troubleshooting

	Changelog
	2.6.1 (2020-11-06)

	2.6.0 (2020-10-27)

	2.5.1 (2020-10-16)

	2.5.0 (2020-10-06)

	2.4.6 (2020-10-02)

	2.4.5 (2020-10-02)

	2.4.4 (2020-10-02)

	2.4.3 (2020-10-01)

	2.4.2 (2020-10-01)

	2.4.1 (2020-10-01)

	2.4.0 (2020-10-01)

	2.3.0 (2020-09-28)

	2.2.0 (2020-08-21)

	2.1.0 (2020-08-21)

	2.0.0 (2020-08-17)

	1.4.1 (2020-05-23)

	1.4.0 (2020-05-23)

	1.3.2 (2020-05-22)

	1.3.1 (2020-05-20)

	1.3.0 (2020-05-20)

	1.2.1 (2020-05-03)

	1.2.0 (2020-05-03)

	1.1.0 (2020-05-03)

	1.0.0 (2020-05-03)

	Credits
	Development Lead

	Contributors

	Contributor Covenant Code of Conduct
	Our Pledge

	Our Standards

	Our Responsibilities

	Scope

	Enforcement

	Attribution

Indices and tables

	Index

	Module Index

	Search Page

 [image: qube Logo]
 [https://user-images.githubusercontent.com/21954664/81098605-e3f23380-8f09-11ea-81e1-a9eeb8545127.png]

[image: Github Workflow Build QUBE Status]
 [https://github.com/qbicsoftware/qube/workflows/Build%20qube%20Package/badge.svg][image: Github Workflow Tests Status]
 [https://github.com/qbicsoftware/qube/workflows/Run%20qube%20Tox%20Test%20Suite/badge.svg][image: PyPi Status]
 [https://pypi.python.org/pypi/qube][image: Downloads]
 [https://pepy.tech/project/qube][image: Documentation Status]
 [https://qube.readthedocs.io/en/latest/?badge=latest][image: Dependabot Enabled]
 [https://flat.badgen.net/dependabot/thepracticaldev/dev.to?icon=dependabot]QBiC’s internal project template collection.

	Free software: MIT

	Documentation: https://qube.readthedocs.io.

Features

	Create one of QBiC’s internal project templates (Java, Groovy or R based)

	List all available templates

	Lint the project to verify that it adheres to QBiC’s standards

	Conveniently bump the version of any qube project

Credits

This package was created with cookietemple [https://cookietemple.com] based on a modified audreyr/cookiecutter-pypackage [https://github.com/audreyr/cookiecutter-pypackage] project template using Cookiecutter [https://github.com/audreyr/cookiecutter].

Newbie Guide to QBiC software

This is the newbie guide to developing software for QBiC. This is not solely the documentation for QUBE.
If you are looking solely for QUBE’s documentation, please proceed with the next sections.

Required tools for Java/Groovy development

1. Java

Our production and test instances use OpenJDK 1.8 [http://openjdk.java.net/] and this is mirrored in our build system.

Installation of OpenJDK varies across operating systems. So it is strongly advised to read more about how to install OpenJDK in your
operating system. Most Linux-based operating systems offer OpenJDK through package managers (e.g., pacman, apt, yum).

Make sure you install a Java development kit (JDK) and not just a Java runtime environment (JRE).

2. Maven

Apache Maven [https://maven.apache.org/] is one of those rare tools whose true purpose
might be hard to grasp in the beginning, yet it is extremely easy to install. If this is your
first time using maven [https://maven.apache.org/], make sure to read Maven in 5 minutes [https://maven.apache.org/guides/getting-started/maven-in-five-minutes.html] and Maven getting started guide [https://maven.apache.org/guides/getting-started/index.html].

It is up to you to decide whether to install maven [https://maven.apache.org/] using your
favorite package manager or install it manually [https://maven.apache.org/install.html]. In any case, make sure you install the most recent version available.

3. Other tools

We use the Travis CI client [https://github.com/travis-ci/travis.rb] to generate encrypted credentials.
You can follow this guide [https://github.com/travis-ci/travis.rb#installation] to get the Travis CI client [https://github.com/travis-ci/travis.rb] installed on your machine.

What to do once you’ve generated your project using QUBE?

QUBE creates just a sample project. Sadly, you will still have to write your own code, tests and documentation.

Write tests, check code coverage

The generated folder already contains simple jUnit 4 [https://junit.org/junit4/] unit tests (i.e.,
in src/test/java/life/qbic/portal/portlet/DonutPortletTest.java).
Writing code that tests your code is an important part of the development lifecycle (see: https://makeameme.org/meme/Yo-dawg-I-wgn8jg).

As a general guideline, try to code the logic of your portlet independent of the user interface so you can easily write code that tests your portlet.

Maven [https://maven.apache.org/] has been configured to execute unit tests under the
src/test folder that match the *Test name (e.g., DonutPortletTest). To run all unit tests, you use the following command:

mvn test

We use Cobertura [https://cobertura.github.io/cobertura/] to generate coverage reports. To run the unit
tests and generate a code coverage report, simply run:

mvn cobertura:cobertura

Similarly, we have configured the Maven [https://maven.apache.org/] plug-ins to run integration tests.
These tests are also under the src/test folder, but their names must end with *IntegrationTest, such as
DonutPortletIntegrationTest. Running integration tests can be a time-consuming task, so these are,
usually, not executed alongside the unit tests. To execute the integration tests, invoke the following command:

mvn verify

Test your code locally

You can easily run the unit and integration tests for libraries you have written by using the mvn test command. This is, more or less, what
our build system does. Take a look at the .travis.yml file located in the common-files if you want to know all implementation details
related to how we do continuous integration.

Testing a portlet locally using Jetty

Go to the generated folder (i.e., generated/donut-portlet in our
case) and run:

mvn jetty:run

You should see an output similar to:

[INFO] Started ServerConnector@67c06a9e{HTTP/1.1,[http/1.1]}{0.0.0.0:8080}
[INFO] Started @30116ms
[INFO] Started Jetty Server

Direct your browser to localhost:8080. If everything went fine, you
will see a portlet with several controls. So far so good,
congratulations!

Interact with the UI and, if this is your first portlet, we strongly
suggest you to try to change a few things in the code and see what
happens after you test again.

Testing other tools locally

We configured a Maven [https://maven.apache.org/] plug-in to generate stand-alone JAR
files for projects of type cli, service and gui.
Maven [https://maven.apache.org/] will package all of the needed dependencies inside one
single JAR file.

To test your CLI tool locally, you first need to package your
artifact using Maven [https://maven.apache.org/] in the generated project folder:

mvn package

You then need to use the following command:

java -jar target/<project_slug>-<version>-jar-with-dependencies.jar

That is:

java -jar target/donut-cli-1.0.0-SNAPSHOT-jar-with-dependencies.jar

Create a new GitHub repository for your new project

You now have a new QBiC project with all the required dependencies and configuration files.
You still need to create a remote repository for it, though, so it’s available for everyone.
QUBE should have prompted you for your Github username and personal access token to conduct this process automatically.
If you declined the automatic creation of the repository, then please follow Create Github Repository [https://help.github.com/articles/create-a-repo/] to
create a repository on GitHub. For this example, we will still use donut-portlet as the
name of our repository. You need to create your GitHub repository under the QBiC GitHub organization [https://github.com/qbicsoftware],
so you need writing access. Ask your favorite QBiC admin if you do not yet have writing rights.

Secure your configuration files before pushing to Git

It might happen that you accidentally pushed a file containing sensitive data. Well - happens.

The good part is that this is reversible. The bad part is that, due to compliance with EU law, whenever
one of these incidents occurs, the only way to do this right is to not only to delete all compromised files from the repository [https://help.github.com/en/articles/removing-sensitive-data-from-a-repository],
but also to change all compromised passwords, which is a great way to ruin someone’s day.

So don’t do it, but if you do, or if you discover such an incident, just know that this should be reported.

Check that everything worked in Travis-CI.com

The generated project folder contains a .travis.yml file that will help you integrate your
GitHub repository with Travis CI [https://travis-ci.org/], our continuous integration service. Broadly speaking, everytime you
push a change into your GitHub repository, Travis CI [https://travis-ci.org/] will use the .travis.yml file to know what to do.

Your repository should have been automatically added to our continuous integration system, but there has been a lot of changes in the platform
that your experience might differ. Follow these steps to check that everything worked as advertised:

	Navigate to (https://travis-ci.com/). Use your GitHub account to
authenticate.

	Click on your name (upper-right corner). You should see your profile
in Travis CI [https://travis-ci.org/].

	Click the Sync account button

	Look for your repository. You might want to filter repositories by
entering the full name of your repository (i.e., donut-portlet)
or parts of it.

	Once you’ve found your repository, click on the Settings button displayed next to it.

If you see the settings page, then it means that everything went fine.
Make sure that the general settings of your repository match the ones shown below:

Report generation using Maven

We generate reports using the Maven site plugin [https://maven.apache.org/plugins/maven-site-plugin/]. The goal site
will output several reports which you can then find in the
target/site directory. So, in other words, running mvn site will
populate the target/site folder with all configured reports, as
defined in parent-poms [https://github.com/qbicsoftware/parent-poms].

Reports are generated in HTML format, so you can access them in your
browser by entering
file://<full-path-to-your-local-repo>/target/site/index.html (e.g.,
file:///home/homer/donut-portlet/target/site/index.html; shh… no
that’s not a typo, that’s three forward slashes, remember that full
paths start with /) in your browser’s address bar.

Provide encrypted information to Travis CI

Any person on the internet can download Maven [https://maven.apache.org/] artifacts from
our public Maven repository [https://qbic-repo.am10.uni-tuebingen.de]. But in order to upload artifacts to our
repository, you will need proper authentication.

Since all of our code is open source, it would not be a good idea to use
cleartext passwords and distribute them in our repositories. This is
also true for other private information such as license codes. However,
Travis CI [https://travis-ci.org/] requires this same information to be present at
build time. Luckily, Travis CI [https://travis-ci.org/] offers a simple way to add
encrypted environment variables [https://docs.travis-ci.com/user/encryption-keys/]. You do not need to fully understand
the implementation details to follow this guide, but no one will be
angry at you if you do.

You only need to execute a single command using the Travis CI client [https://github.com/travis-ci/travis.rb] to add
an encrypted variable to your .travis.yml. Let’s say, for instance, that you need to add an environment variable,
NUCLEAR_REACTOR_RELEASE_CODE whose value is d0nut5_Ar3_t4sty. You would have to use the following command:

travis encrypt "NUCLEAR_REACTOR_RELEASE_CODE=d0nut5_Ar3_t4sty" --add env.global --pro

This command will automatically edit .travis.yml (if you want edit
the file yourself, do not use the --add env.global parameter).

Maven credentials

To enable Maven [https://maven.apache.org/] deployments in Travis CI [https://travis-ci.org/], add both
MAVEN_REPO_USERNAME and MAVEN_REPO_PASSWORD as encrypted
variables in your .travis.yml file like so:

travis encrypt "MAVEN_REPO_USERNAME=<username>" --add env.global --pro
travis encrypt "MAVEN_REPO_PASSWORD=<password>" --add env.global --pro

Ask the people who wrote this guide about the proper values of <username> and <password>.
Encrypted values in Travis CI [https://travis-ci.org/] are bound to their GitHub repository, so you cannot simply
copy them from other repositories.

Using Vaadin Charts add-on in your portlet

This add-on requires you to have a proper license code. If your portlet
requires this add-on, add the VADIN_CHARTS_LICENSE_CODE as an
encrypted variable in .travis.yml:

travis encrypt "VAADIN_CHARTS_LICENSE_CODE=<license-code>" --add env.global --pro

Ask around for the license code.

Publish your first version

In your local GitHub repository directory (i.e., donut-portlet) run
the following commands:

git init
git add .
git commit -m "Initial commit before pressing the 'flush radioactive material' button"
git remote add origin https://github.com/qbicsoftware/donut-portlet
git push origin master
git checkout -b development
git push origin development

Of course, you must replace donut-portlet with the real name of your
repository. You can now start using your repository containing your brand new portlet.

Change default branch

We strongly recommend you to set the development branch as your default branch by following setting the default branch [https://help.github.com/articles/setting-the-default-branch/].

Dependabot

Almost all of QUBE’s template use Dependabot [https://dependabot.com/] to automatically submit pull requests to the project’s
repository whenever an update for a dependency was released. If you pushed your project to Github using QUBE’s Github support
everything is already setup for you. If not, you may need to create a development branch and a dependabot issue label.

Read the docs

All of QUBE’s templates come with Read the Docs [https://readthedocs.org/] preconfigured.

The only thing left for you to do is to enable your repository for Read the Docs [https://readthedocs.org/].
Please follow the importing your documentation guide [https://docs.readthedocs.io/en/stable/intro/import-guide.html].
You should not need to manually import your project if you are a member of QBiC software (which you should be!).

Github Actions

All of QUBE’s templates feature Github Actions [https://github.com/features/actions] support. Github Actions is part of our continuous integration setup
and various template specific workflows are active (on push). Examples are the automatial runs of test suites, package building, linting and more.
You usually should not need to touch them, but feel free to add additional workflows. They are located in .github/workflows/.

Installation

Stable release

To install qube, run this command in your terminal:

$ pip install qube

This is the preferred method to install qube, as it will always install the most recent stable release.

If you don’t have pip [https://pip.pypa.io] installed, this Python installation guide [http://docs.python-guide.org/en/latest/starting/installation/] can guide
you through the process.

From sources

The sources for qube can be downloaded from the Github repo [https://github.com/qbicsoftware/qube].

You can either clone the public repository:

$ git clone git://github.com/qbicsoftware/qube

Or download the tarball [https://github.com/qbicsoftware/qube/tarball/master]:

$ curl -OJL https://github.com/qbicsoftware/qube/tarball/master

Once you have a copy of the source, you can install it with:

$ python setup.py install

General Usage

In the following an overview of qube’s main commands is given.
Please note that all commands are explained more in depth in their respective documentation point. You can use the menu on the left to navigate to them.

create

create is the heart of qube.
It starts the project creation process and guides the user through domain selection, language selection and prompts for all required configuration parameters such as name, email and many more.
Additionally, the project is linted after creation to ensure that everything went well.
The user also has the option to push his just created project directly to Github.
Invoke create by running

$ qube create

For more details about project creation please visit Create a project and for a detailed list of all available templates please visit Available templates.

list

list allows you to list all available templates.
The list command prints the name, handle, short description, available libraries for the template and its version to the console.
Note that the long description is emitted and the info command should be used to get a long description of the template.
Invoke list by running

$ qube list

For more details please visit Getting information about available templates.

info

info provides detailed information about a specific template or set of templates.
It prints the name, handle, long description, available libraries and version of the selected subset or specific template.
Invoke info by running

$ qube info <HANDLE>

For more details please visit Getting information about available templates.

lint

lint ensures that the template adheres to qube’s standards.
When linting an already existing project several general checks, which all templates share are performed and afterwards template specific linting functions are run.
All results are collected and printed to the user. If any of the checks fail linting terminates.
Invoke lint by running

$ qube lint

For more details please visit Linting your project.

bump-version

bump-version conveniently bumps the version of a qube based project across several files.
Default configurations for bump-version are shipped with the template and can be extended if the user so desires.
All lines where the version was changed are printed to the console.
Invoke bump-version by running

$ qube bump-version <NEWVERSION> <PATH>

For more details please visit Bumping the version of an existing project.

sync

sync checks for a project whether a newer version of the used template is available.
If so, a pull request with only the changes of the newer template version is created against the development/last active branchh.
Invoke sync by running

$ qube sync

For more details please visit Syncing your project.

config

config sets commonly used defaults for the project creation.
Moreover, it is required for qube’s Github support, since it takes care of the personal access token (PAT).
Invoke config by running

$ qube config <all/general/pat>

For more details please visit Configure qube and Github Support.

upgrade

upgrade checks whether a new version is available on PyPI and upgrades the version if not.
Invoke upgrade by running

$ qube upgrade

For more details please visit Upgrade qube.

External Python based projects

To use qube in an external Python based project

import qube

The main functions that you might be interested in can be found here [https://github.com/Zethson/qube/blob/development/qube/qube_cli.py] in our repository.

Configure qube

To prevent frequent prompts for information, which rarely or never changes at all such as the full name, email or Github name of the user qube uses a configuration file.
Moreover, the personal access token associated with the Github username is stored encrypted to increase the security even if malicious attackers already have access to your personal computer.
The creation of projects with qube requires a configuration file. A personal access token is not required, if Github support is not used.
The configuration file is saved operating system dependent in the usual config file locations (~/.config/qube on Unix, C:UsersUsernameAppDataLocalqubeqube).

Invoke qube config via

$ qube config <all/general/pat>

qube config all

If qube config all is called, the options general and afterwards pat are called.

qube config general

qube config general prompts for the full name, email address and Github username of the user. If you are not using Github simply keep the default value.
These attributes are shared by all templates and therefore should only be set once. If you need to update these attributes naturally rerun the command.

qube config pat

qube’s Github support requires access to your Github repositories to create repositories, add issues labels and set branch protection rules.
Github manages these access rights through Personal Access Tokens (PAT).
If you are using qube’s Github support for the first time qube config pat will be run and you will be prompted for your Github PAT.
Please refer to the official documentation [https://help.github.com/en/github/authenticating-to-github/creating-a-personal-access-token-for-the-command-line] on how to create one.
qube only requires repo access, so you only need to tick this box. However, if you want to use qube’s sync feature on organisation repositories,
you also need to tick admin:org. This ensures that your PAT would not even allow for the deletion of repositories.
qube then encrypts the Personal Access Token, adds the encrypted token to the qube_conf.cfg file (OS dependent stored) and saves the key locally in a hidden place.
This is safer than Github’s official way, which recommends the usage of environment variables or Github Credentials, which both save the token in plaintext.
It is still strongly adviced to secure your personal computer and not allow any foe to get access.
If you create a second project using qube at a later stage, you will not be prompted again for your Github username, nor your Personal Access Token.

Updating a personal access token

If you for any reason need to regenerate your PAT rerun qube config pat. Ensure that your Github username still matches.
If not you should also update your Github username via qube config general.
Additionally, any of your already created projects may still feature your old PAT and you may therefore run into issues when attempting to push.
Hence, you must also update your remote URL [https://help.github.com/en/github/using-git/changing-a-remotes-url] for those projects!

Viewing the current configuration

If you want to see your current configuration (in case of an update for example), you can use qube config --view.
This will output your current qube configuration. Note that this will only inform you whether your personal access token (PAT) is set or not. It won’t actually
print its (encrypted) value.

Create a project

Creating projects from templates is the heart of qube.

Our templates adhere to best practices and try to be as modern as possible. Furthermore, they try to automate tasks such as automatical dependency resolvement and installation, packaging, deployment and more.

To learn more about our templates please visit Available templates and check out your template of interest.

The creation of a new project can be invoked by

$ qube create

which will guide you through the creation process of your (customized) project via prompts. If you do not have a qube config yet, you will be asked to create one first.
The full name, email and possibly more information set during the configuration process is required when creating the project. For more details please visit Configure qube.
The prompts follow the pattern of domain (e.g. cli, gui, …), subdomain (if applicable, e.g. website), language (e.g. Python) followed by template specific prompts (e.g. testing frameworks, …).
| The template will be created at the current working directory, where qube has been called.

It is also possible to directly create a specific template using its handle

$ qube create --handle <HANDLE>

After the template has been created, linting (see Linting your project) is automatically performed to verify that the template creation process was successful.

You may already be made aware of any TODOs, which you should examine before coding your project.

Finally, you will be asked whether or not you want to automatically push your new project to Github. For more details about the Github support please visit Github Support.

Note that in order to use the automatic Github repo creation feature, you need to set a personal access token (for login, since a login via password will be deprecated in Autumn 2020) via qube config pat (if not already done). This token is also used for qube’s sync feature.

Take a look at the Github docs [https://docs.github.com/en/github/authenticating-to-github/creating-a-personal-access-token] to see, how to create a personal access token for your Github account.

Getting information about available templates

Although, information on all QUBE templates is provided in Available templates in our documentation, it is often times more convenient to get a quick overview from the commandline.

Hence, QUBE provides two commands list and info, which print information on all available templates with different levels of detail.

list

QUBE list can be invoked via:

qube list

[image: List example]
Example output of qube list. Note that the content of the output is of course subject to change.

qube list is restricted to the short descriptions of the templates. If you want to read more about a specific (sets of) template, please use the info command.

info

The info command should be used when the short description of a template is not sufficient and a more detailed description is required.

Moreover, when you are unsure which template suits you best and you would like to read more about a specific subset of templates further, info is your friend.

Invoke qube info via:

qube info <HANDLE>

[image: Info example]
Example output of qube info. The handle can also be shortened to e.g. just cli, to output all command line templates of QUBE.

It is not necessary to use a full handle such as cli-java. Alternatively, a subset of the handle such as cli can be used and as a result detailed information on all templates of the requested domain will be printed.

Linting your project

Linting [https://en.wikipedia.org/wiki/Lint_(software)] is the process of statically analyzing code to find code style violations and to detect errors.
qube implements a custom linting system, but depending on the template external tools linting tools may additionally be called.

qube linting

qube lint can be invoked on an existing project using

$ qube lint <OPTIONS> <PATH>

qube’s linting is divided into three distinct phases.

	All linting functions, which all templates share are called and the results are collected.

	Template specific linting functions are invoked and the results are appended to the results of phase 1

	Template specific external linters are called (e.g. autopep8 for Python based projects)

The linting results of the first two phases are assigned into 3 groups:

	Passed

	Passed with warning

	Failed

If any of the checks failed linting stops and returns an error code.

[image: Linting example]
Linting applied to a newly created cli-java project.

To examine the reason for a failed linting test please follow the URL. All reasons are explained in the section Linting codes.

Linting codes

The following error numbers correspond to errors found during linting.
If you are not sure why a specific linting error has occurred you may find more information using the respective error code.

General

general-1

File not found. This error occurs when your project does not include all of qube’s files, which all templates share.

Please create the file and populate it with appropriate values. You should also critically reflect why it is missing, since
at the time of the project creation using qube this file should not have been missing!

general-2

Dockerfile invalid. This error usually originates from empty Dockerfiles or missing FROM statements.

general-3

TODO String found. The origin of this error are QUBE TODO strings in the respective files. Usually, they point to things that should be
manually configured or require other attention. You may remove them if there is no task for you to be solved.

general-4

Cookiecutter String found. This error occurs if something went wrong at the project creation stage. After a project has been created using qube
there should not be any jinja2 syntax statements left. Web development templates may pose exceptions. However, {{ *cookiecutter* }} statements
should definitely not be present anymore.

general-5

Versions not consistent. If the version of all files specified in the [bumpversion] sections defined in the qube.cfg file are not consistent,
this error may be found. Please ensure that the version is consistent! If you need to exclude specific lines from this check please consult Bumping the version of an existing project.
To prevent this error you should only increase the version of your project using qube bump-version.

general-6

changelog.rst invalid. The changelog.rst file requires that every changelog section has a header with the version and the corresponding release date.
The version above another changelog section should always be greater than the section below (e.g. 1.1.0 above 1.0.0).
Every section must have the headings **Added**, **Fixed**, **Dependencies** and **Deprecated**.

Bumping the version of an existing project

Increasing the version of an already existing project is often times a cumbersome and error prone process, since the version has to be changed in multiple places.

To facilitate this process, qube provides a bump-version command, which conveniently increases the version across several files.

Additionally, always adding new sections to the changelog is an annoying process. bump-version therefore inserts a new section into the changelog using the specified new version.

New Version (Date)

Added

Fixed

Dependencies

Deprecated

bump-version will verify that your new version adheres to semantic versioning [https://semver.org/] and that you are not trying to update it unreasonably.
It is for example not allowed to bump from 2.0.0 to 7.1.2, since in a normal development workflow only 2.0.1, 2.1.0 or 3.0.0 adhere to consecutive semantic versioning [https://semver.org/].
Note that SNAPSHOT versions are allowed! Hence, qube bump-version 1.2.5-SNAPSHOT is allowed. However, it must still follow semantic versioning [https://semver.org/].
Version 1.2.5 therefore cannot be the predecessor of 1.2.5-SNAPSHOT, but only 1.2.4.

Usage

The bump-version command follows the syntax

$ qube bump-version <OPTIONS> X.X.X <PATH>

where X corresponds to a (python)-integer value of any possible range.

The PATH corresponds to the path to the qube.cfg file, which contains all locations, where the version should be increased.

Note that you don´t need to specify a path, if your current working directory contains the qube.cfg file.

[image: bump-version example]
bump-version applied to a fresh cli-python project

Use the --downgrade option to downgrade your version. The changelog will not be changed. Only use this option as a last resort if something went horribly wrong in your development process.
In a normal development workflow this should never be necessary.

Configuration

All templates of qube ship with a qube.cfg file, which defines all files bump-version examines.

The bump-version configuration begins with the section:

[bumpversion]
current_version = 0.1.0

where the current version is defined. All files are either white- or blacklisted (see below for explanations).
An arbitrary name is followed by the path to the file: arbitrary_name = path_to_file.

Whitelisted files are listed below a [bumpversion_files_whitelisted] section, e.g.:

[bumpversion_files_whitelisted]
dot_qube = .qube.yml
conf_py = docs/conf.py

All files, which are whitelisted are searched for patterns matching X.X.X, which are updated to the specified new versions.

Any lines, which contain the string <<QUBE_NO_BUMP>> will be ignored.

If files like Maven pom.xml files, contain many version patterns matching X.X.X, it may be a better idea to blacklist them (section [bumpversion_files_blacklisted]) and enable only specific lines to be updated:

[bumpversion_files_blacklisted]
pom = pom.xml

Analogously to whitelisted files, which allow for specific lines to be ignored, blacklisted files allow for specific lines to be forcibly updated using the string <<QUBE_FORCE_BUMP>>.

Note that those tags must be on the same line as the version (commonly placed in a comment), otherwise they wont work!

Syncing your project

Syncing is supposed to integrate any changes to the qube templates back into your already existing project.

Overview

When qube sync is invoked, qube checks whether a new version of the corresponding template for the current project is available.
If so, qube now creates a temporary project with the most recent template and pushes it to the TEMPLATE branch.
Next, a pull request is submitted to the development or most recently used branch.
The syncing process is configurable by setting the desired lower syncing boundary level and blacklisting files from syncing (see Sync level.

Requirements for sync

For syncing to work properly, your project has to satisfy a few things:

1.) A Github repository with your projects code (private or public, organization or non-organization repository).

2.) An unmodified .qube.yml file (if you modified this file, what you should never do, syncing may not be able to recreate the project with the most recent template.

3.) A running, unmodified workflow called sync.yml. Modifying this workflow should never be done and results in undefined sync behaviour.

4.) An active repository secret called QUBE_SYNC_TOKEN for your project’s repository containing the encrypted personal access token with at least repo scope.

5.) It is strongly advised not to touch the TEMPLATE branch.

How to use sync?

The sync command from qube has a few options to run with. For a first overview see $ qube sync --help.
Note that you never need to run qube sync manually with the workflow, but you can do any time if you want.

What command line options are available?

The basic sync command syntax is: $ qube sync [PROJECT_DIR] --set-token ([PAT] [GITHUB_USERNAME]) --check-update

Running sync manually on an active qube project with a Github repo, you should never ever have to set the PAT or GITHUB_USERNAME. These
are options that are only required for the sync_project workflow for automatic sycning.
So: You never need to care about these parameters when calling qube sync manually.

An important parameter is PROJECT_DIR. This parameter contains the (relative) path to the qube projects top level directory, you would like to sync.
Per default, this one is set to the current working directory. So, for example, if your current working directory is like /home/homersimpson/projects and you would like to sync
your project named ExplodingSpringfield located in /home/homersimpson/projects you need to call $ qube sync ExplodingSpringfield/.
This one should be always set (unless your current working directory is the top level directory of the project you’d like to sync).

Next, sync provides two flags: $ qube sync [PROJECT_DIR] --set-token can be used to update your QUBE_SYNC_TOKEN, which qube uses
to sync your project (especially when syncing with the workflow). This could be useful, for example, when the ownership of a repo had changed.

The --check_update flag, called via $ qube sync [PROJECT_DIR] --check-update, can be used for manually checking whether a new version for your template has been released by qube.
Note that when you call $ qube sync [PROJECT_DIR] qube also runs this check, but then proceeds with syncing rather than exiting.

What happens when my project gets synced?

Syncing can happen via two ways: One way is when you call $ qube sync [PROJECT_DIR] manually from your command line.
This way, qube checks whether a new version has been released or not, and if so, creates a pull request with all changes (excluding blacklisted files) from the TEMPLATE branch to your
current working branch.

The other way would be via the sync_project.yml workflow. This workflow triggers on push everytime you push changes to your repository. You can safely modify this behaviour to only trigger
this workflow for example when a PR is created. The result is the same like above but you don’t need to remember to run sync manually on a regular basis.

Note that the PR is currently automatically created by the one who initially created/owns this repository.

Configuring sync

Sync level

Since qube strongly adheres to semantic versioning our templates do too.
Hence, it is customizable whether only major, minor or all (=patch level) releases of the template should trigger qube sync.
The sync level therefore specifies a lower boundary. It can be configured in the:

[sync_level]
ct_sync_level = minor

section.

Blacklisting files

Although, qube only submits pull requests for files, which are part of the template sometimes even those files should be ignored.
Examples could be any html files, which at some point contain only custom content and should not be synced.
When syncing, qube examines the qube.cfg file and ignores any file patterns (e.g. *.html) below the [sync_files_blacklisted] section.

Upgrade qube

Every time qube is run it will automatically contact PyPI to check whether the locally installed version of qube is the latest version available.
If not

$ qube upgrade

can be run. The command calls pip [https://pypi.org/project/pip/] in upgrade mode to upgrade qube to the latest version.
For this to work however, it is required that pip is accessible from your PATH.

It is advised not to mix installations using setuptools directly and pip. If you are not a developer of qube this should not concern you.

Github Support

Overview

qube uses GitPython [https://gitpython.readthedocs.io/en/stable/] and PyGithub [https://pygithub.readthedocs.io/en/latest/introduction.html] to automatically create a repository, add, commit and push all files.
Moreover, issue labels, a development and a TEMPLATE branch are created. The TEMPLATE branch is required for Syncing your project to work and should not be touched manually.

Branches

Overview

git branches can be understood as diverging copies of the main line of development and facilitate parallel development.
To learn more about branches read Branches in a Nutshell [https://git-scm.com/book/en/v2/Git-Branching-Branches-in-a-Nutshell] of the Pro Git Book [https://git-scm.com/book].
A simple best practice development workflow follows the pattern that the master branch always contains the latest released code.
It should only be touched for new releases. Code on the master branch must compile and be as bug free as possible.
Development takes place on the development branch. All parallelly developed features eventually make it into this branch.
The development branch should always compile, but it may contain incomplete features or known bugs.
qube creates a TEMPLATE branch, which is required for Syncing your project to work and should not be touched manually.

Branch protection rules

qube sets several branch protection rules, which enforce a minimum standard of best branch practices.
For more information please read about protected branches [https://help.github.com/en/github/administering-a-repository/about-protected-branches].
The following branch protection rules only apply to the master branch:

	Required review for pull requests: A pull request to master can only be merged if the code was at least reviewed by one person. If you are developing alone you can merge with your administrator powers.

	Dismiss stale pull request approvals when new commits are pushed.

Github Actions

Overview

Modern development tries to merge new features and bug fixes as soon as possible into the development branch, since big, diverging branches are more likely to lead to merge conflicts.
This practice is known as continuous integration [https://en.wikipedia.org/wiki/Continuous_integration] (CI).
Continuous integration is usually complemented with automated tests and continuous delivery (CD).
All of qube’s templates feature Github Actions [https://github.com/features/actions] as main CI/CD service.
Please read the Github Actions Overview [https://github.com/features/actions] for more information.
On specific conditions (usually push events), the Github Actions workflows are triggered and executed.
The developers should ensure that all workflows always pass before merging, since they ensure that the package still builds and all tests are executed successfully.

pr_to_master_from_patch_release_only workflow

All templates feature a workflow called pr_to_master_from_patch_release_only.yml.
This workflow runs everytime a PR to your projects master branch is created. It fails, if the PR to the master branch
origins from a branch that does not contain PATCH or release in its branch name.
If development code is written on a branch called development``and a new release of the project is to be made,
one should create a ``release branch only for this purpose and then merge it into master branch.
This ensures that new developments can already be merged into development, while the release is finally prepared.
The PATCH branch should be used for required hotfixes (checked out directly from master branch) because, in the meantime, there might
multiple developments going on at development branch and you dont want to interfere with them.

sync_project.yml

All templates also feature this workflow. This workflow is used for automatic syncing (if enabled) your project with the latest qube template version.
The workflow is run on push events, although this behavior can be customized if desired.
The workflow calls qube sync, which first checks whether a new template version is available and if so it submits a pull request.
For more details please visit Syncing your project.

Secrets

Github secrets are what their name suggests: Encrypted secret values in a repository or an organisation; once they are set their value can be used for sensible data in
a project or an organisation but their raw value can never be seen again even by an administrator (but it can be updated).

qube uses a secret called QUBE_SYNC_TOKEN for its syncing feature. This secret is automatically created during the repo creation process, if you choose to create a GitHub repo.
The secret contains your encrypted personal access token as its value. Note that this will have no effect on how to login or any other activity in your project.
If you remove the secret or change its value (even with another personal access token of you) the syncing feature will no longer work.
In case you are creating an organisation repository, the secret will also be stored as a repository secret, only usable for your specific project.

See section below in case your Github repository creation failed during the create process.

Error Handling due to failed Github repo creation

Errors during the create process due to a failed Github repo creation may occur due to a vast amount of reasons:
Some common error sources are:

	You have no active internet connection or your firewall protects you against making calls to external APIs.

2. The Github API service or Github itself is unreachable at the moment, which can happen from time to time. In doubt, make sure to check
the Github status page [https://www.githubstatus.com/].

	A repo with the same name already exists in your account/your organisation.

Creation fails, ok: But how can I then access the full features of qube?
You can try to fix the issue (or wait some time on case, for example, when Github is down) and then process to create a Github repostiryo manually.
After this, make sure to create a secret named QUBE_SYNC_TOKEN with the value of your PAT for your repository. See the Github docs [https://docs.github.com/en/actions/configuring-and-managing-workflows/creating-and-storing-encrypted-secrets]
for more information on how to create a secret.

Issue labels

qube’s Github support automatically creates issue labels [https://help.github.com/en/github/managing-your-work-on-github/labeling-issues-and-pull-requests].
Currently the following labels are automatically created:
https://en.wikipedia.org/wiki/Continuous_integration
1. dependabot: All templates, which include Dependabot [https://dependabot.com/] support label all Dependabot pull requests with this label.

Available templates

qube currently has the following templates available:

	cli-java

	gui-java

	lib-java

	lib-groovy

	service-java

	portlet-groovy

	portlet-groovy-osgi

In the following every template is devoted its own section, which explains its purpose, design, included frameworks/libraries, usage and frequently asked questions.
A set of frequently questions, which all templates share see here: Shared FAQ FAQ.
It is recommended to use the sidebar to navigate this documentation, since it is very long and cumbersome to scroll through.

cli-java

Purpose

cli-java is the template of choice for picocli [https://picocli.info/] based command line applications, which require a JVM and the related ecosystem (e.g. due to requirement to use OpenBIS).

These applications result in jars and can therefore only be started when a JDK is present. They do not ship with custom JREs!

Therefore, if you are not bound to the JVM ecosystem, it may be a better idea to go for Python based projects, since Python is installed and available on every Unix machine.

QUBE currently does not offer a cli-python template, but you may make use of COOKIETEMPLE’s cli-python [https://cookietemple.com].

Design

This template follows the standard Maven project layout.

├── AUTHORS.rst
├── CHANGELOG.rst
├── CODEOFCONDUCT.rst
├── .dependabot
│ └── config.yml
├── docs
│ ├── authors.rst
│ ├── changelog.rst
│ ├── codeofconduct.rst
│ ├── conf.py
│ ├── index.rst
│ ├── installation.rst
│ ├── make.bat
│ ├── Makefile
│ ├── readme.rst
│ ├── requirements.txt
│ └── usage.rst
├── .github
│ ├── ISSUE_TEMPLATE
│ │ ├── bug_report.md
│ │ ├── feature_request.md
│ │ └── general_question.md
│ ├── pull_request_template.md
│ └── workflows
│ ├── build_docs.yml
│ ├── build_package.yml
│ ├── java_checkstyle.yml
│ └── run_tests.yml
├── .gitignore
├── LICENSE
├── pom.xml
├── qube.cfg
├── .qube.yml
├── README.rst
├── .readthedocs.yml
├── src
│ ├── main
│ │ ├── java
│ │ │ └── life
│ │ │ └── qbic
│ │ │ └── cli
│ │ │ ├── SampleCommand.java
│ │ │ ├── SampleEntryPoint.java
│ │ │ └── SampleTool.java
│ │ └── resources
│ │ ├── log4j2.xml
│ │ └── tool.properties
│ └── test
│ ├── java
│ │ └── life
│ │ └── qbic
│ │ └── cli
│ │ ├── SampleIntegrationTest.java
│ │ └── SampleTest.java
│ └── resources
│ ├── log4j2.xml
│ └── tool.properties
├── .travis.settings.xml
└── .travis.yml

If you are unfamiliar with specific files/file types, you may find them in our Newbie Guide to QBiC software.

Included frameworks/libraries

	Like all of QBiC’s JVM based projects, cli-java uses QBiC’s parent-pom [https://github.com/qbicsoftware/parent-poms].

	cli-java uses picocli [https://picocli.info/] to expose the commandline parameters to the user.

	junit4 [https://junit.org/junit4/] is currently QBiC’s testing framework of choice.
If you require mocking for any integration tests or advanced command line tests, Mockito [https://site.mockito.org/] may be useful.

	Preconfigured ReadTheDocs [https://readthedocs.org/].

	Four Github workflows are shipped with the template

	build_docs.yml, which builds the ReadTheDocs [https://readthedocs.org/] documentation.

	build_package.yml, which builds the Maven [https://maven.apache.org/] based project.

	java_checkstyle.yml, which runs Checkstyle [https://checkstyle.sourceforge.io/] using Google’s Styleguides [https://github.com/checkstyle/checkstyle/blob/master/src/main/resources/google_checks.xml].

	run_test.yml, which runs all junit4 [https://junit.org/junit4/] tests.

	qube_lint.yml, which runs QUBE’s linting on the project.

	pr_to_master_from_development_only.yml which fails if the PR does not come from a release or hotfix branch

Usage

The main Maven [https://maven.apache.org/] commands such as mvn test, mvn verify, mvn package and more are used to test and package cli-java based projects.

gui-java

Purpose

gui-java is QBiC’s choice for all templates, which require a Desktop user interface. Hence, the application is not necessarily on the web.

The GUI framework of choice is JavaFX 8 [https://openjfx.io/]. Be aware that most of the documentation has already moved past version 8.

Design

gui-java follows the standard Maven project layout.

├── AUTHORS.rst
├── CHANGELOG.rst
├── CODEOFCONDUCT.rst
├── .dependabot
│ └── config.yml
├── docs
│ ├── authors.rst
│ ├── changelog.rst
│ ├── codeofconduct.rst
│ ├── conf.py
│ ├── index.rst
│ ├── installation.rst
│ ├── make.bat
│ ├── Makefile
│ ├── readme.rst
│ ├── requirements.txt
│ └── usage.rst
├── .github
│ ├── ISSUE_TEMPLATE
│ │ ├── bug_report.md
│ │ ├── feature_request.md
│ │ └── general_question.md
│ ├── pull_request_template.md
│ └── workflows
│ ├── build_docs.yml
│ ├── build_package.yml
│ ├── java_checkstyle.yml
│ └── run_tests.yml
├── .gitignore
├── LICENSE
├── pom.xml
├── qube.cfg
├── .qube.yml
├── README.rst
├── .readthedocs.yml
├── src
│ ├── main
│ │ ├── java
│ │ │ └── life
│ │ │ └── qbic
│ │ │ └── gui
│ │ │ ├── SampleApplication.java
│ │ │ ├── SampleCommand.java
│ │ │ └── SampleEntryPoint.java
│ │ └── resources
│ │ ├── log4j2.xml
│ │ └── tool.properties
│ └── test
│ ├── java
│ │ └── life
│ │ └── qbic
│ │ └── gui
│ │ ├── SampleIntegrationTest.java
│ │ └── SampleTest.java
│ └── resources
│ ├── log4j2.xml
│ └── tool.properties
├── .travis.settings.xml
└── .travis.yml

If you are unfamiliar with specific files/file types, you may find them in our Newbie Guide to QBiC software.

Included frameworks/libraries

	Like all of QBiC’s JVM based projects, lib-java uses QBiC’s parent-pom [https://github.com/qbicsoftware/parent-poms].

	gui-java uses JavaFX 8 [https://openjfx.io/] to build the graphical user interface.

	junit4 [https://junit.org/junit4/] is currently QBiC’s testing framework of choice.
If you require mocking for any integration tests or advanced command line tests, Mockito [https://site.mockito.org/] may be useful.

	Preconfigured ReadTheDocs [https://readthedocs.org/].

	Four Github workflows are shipped with the template

	build_docs.yml, which builds the ReadTheDocs [https://readthedocs.org/] documentation.

	build_package.yml, which builds the Maven [https://maven.apache.org/] based project.

	java_checkstyle.yml, which runs Checkstyle [https://checkstyle.sourceforge.io/] using Google’s Styleguides [https://github.com/checkstyle/checkstyle/blob/master/src/main/resources/google_checks.xml].

	run_test.yml, which runs all junit4 [https://junit.org/junit4/] tests.

	qube_lint.yml, which runs QUBE’s linting on the project.

	pr_to_master_from_development_only.yml which fails if the PR does not come from a release or hotfix branch

Usage

The main Maven [https://maven.apache.org/] commands such as mvn test, mvn verify, mvn package and more are used to test and package cli-java based projects.

lib-java

Purpose

cli-lib is by design more open end than the other templates.
The goal of a cli-lib project is not to be run as a standalone, but rather to be included as a library in other JVM based projects.

Design

lib-java follows the standard Maven project layout.

├── AUTHORS.rst
├── CHANGELOG.rst
├── CODEOFCONDUCT.rst
├── .dependabot
│ └── config.yml
├── docs
│ ├── authors.rst
│ ├── changelog.rst
│ ├── codeofconduct.rst
│ ├── conf.py
│ ├── index.rst
│ ├── installation.rst
│ ├── make.bat
│ ├── Makefile
│ ├── readme.rst
│ ├── requirements.txt
│ └── usage.rst
├── .github
│ ├── ISSUE_TEMPLATE
│ │ ├── bug_report.md
│ │ ├── feature_request.md
│ │ └── general_question.md
│ ├── pull_request_template.md
│ └── workflows
│ ├── build_docs.yml
│ ├── build_package.yml
│ ├── java_checkstyle.yml
│ └── run_tests.yml
├── .gitignore
├── LICENSE
├── pom.xml
├── qube.cfg
├── .qube.yml
├── README.rst
├── .readthedocs.yml
├── src
│ ├── main
│ │ ├── java
│ │ │ └── life
│ │ │ └── qbic
│ │ │ └── package-info.java
│ │ └── resources
│ │ └── .gitignore
│ └── test
│ ├── java
│ │ └── life
│ │ └── qbic
│ │ └── package-info.java
│ └── resources
│ └── log4j2.xml
├── .travis.settings.xml
└── .travis.yml

If you are unfamiliar with specific files/file types, you may find them in our Newbie Guide to QBiC software.

Included frameworks/libraries

	Like all of QBiC’s JVM based projects, lib-java uses QBiC’s parent-pom [https://github.com/qbicsoftware/parent-poms].

	junit4 [https://junit.org/junit4/] is currently QBiC’s testing framework of choice.
If you require mocking for any integration tests or advanced command line tests, Mockito [https://site.mockito.org/] may be useful.

	Preconfigured ReadTheDocs [https://readthedocs.org/].

	Four Github workflows are shipped with the template

	build_docs.yml, which builds the ReadTheDocs [https://readthedocs.org/] documentation.

	build_package.yml, which builds the Maven [https://maven.apache.org/] based project.

	java_checkstyle.yml, which runs Checkstyle [https://checkstyle.sourceforge.io/] using Google’s Styleguides [https://github.com/checkstyle/checkstyle/blob/master/src/main/resources/google_checks.xml].

	run_test.yml, which runs all junit4 [https://junit.org/junit4/] tests.

	qube_lint.yml, which runs QUBE’s linting on the project.

	pr_to_master_from_development_only.yml which fails if the PR does not come from a release or hotfix branch

Usage

The main Maven [https://maven.apache.org/] commands such as mvn test, mvn verify, mvn package and more are used to test and package cli-java based projects.

lib-groovy

Purpose

lib-groovy is by design more open end than the other templates.
The goal of a cli-lib project is not to be run as a standalone, but rather to be included as a library in other JVM based projects.

Design

lib-groovy follows the standard Maven project layout.

├── AUTHORS.rst
├── CHANGELOG.rst
├── CODEOFCONDUCT.rst
├── .dependabot
│ └── config.yml
├── docs
│ ├── authors.rst
│ ├── changelog.rst
│ ├── codeofconduct.rst
│ ├── conf.py
│ ├── index.rst
│ ├── installation.rst
│ ├── make.bat
│ ├── Makefile
│ ├── readme.rst
│ ├── requirements.txt
│ └── usage.rst
├── .github
│ ├── ISSUE_TEMPLATE
│ │ ├── bug_report.md
│ │ ├── feature_request.md
│ │ └── general_question.md
│ ├── pull_request_template.md
│ └── workflows
│ ├── build_docs.yml
│ ├── build_package.yml
│ ├── java_checkstyle.yml
│ └── run_tests.yml
├── .gitignore
├── LICENSE
├── pom.xml
├── qube.cfg
├── .qube.yml
├── README.rst
├── .readthedocs.yml
├── src
│ ├── main
│ │ ├── groovy
│ │ │ └── life
│ │ │ └── qbic
│ │ │ └── package-info.java
│ │ └── resources
│ │ └── .gitignore
│ └── test
│ ├── groovy
│ │ └── life
│ │ └── qbic
│ │ └── package-info.java
│ └── resources
│ └── log4j2.xml
├── .travis.settings.xml
└── .travis.yml

If you are unfamiliar with specific files/file types, you may find them in our Newbie Guide to QBiC software.

Included frameworks/libraries

	Unlike all of QBiC’s JVM based projects, lib-groovy does not use QBiC’s parent-pom [https://github.com/qbicsoftware/parent-poms] for now.

	spock [http://spockframework.org/spock/docs/1.3/index.html/] is currently QBiC’s testing framework of choice.
If you require mocking for any integration tests or advanced command line tests, Mockito [https://site.mockito.org/] may be useful.

	Preconfigured ReadTheDocs [https://readthedocs.org/].

	Four Github workflows are shipped with the template

	build_docs.yml, which builds the ReadTheDocs [https://readthedocs.org/] documentation.

	build_package.yml, which builds the Maven [https://maven.apache.org/] based project.

	java_checkstyle.yml, which runs Checkstyle [https://checkstyle.sourceforge.io/] using Google’s Styleguides [https://github.com/checkstyle/checkstyle/blob/master/src/main/resources/google_checks.xml].

	run_test.yml, which runs all junit4 [https://junit.org/junit4/] tests.

	qube_lint.yml, which runs QUBE’s linting on the project.

	pr_to_master_from_development_only.yml which fails if the PR does not come from a release or hotfix branch

Usage

The main Maven [https://maven.apache.org/] commands such as mvn test, mvn verify, mvn package and more are used to test and package cli-groovy based projects.

service-java

Purpose

service-java is a base template for services, which are similar to commandline tools, but stay active until shutdown.

Design

service-java follows the standard Maven project layout.

├── AUTHORS.rst
├── CHANGELOG.rst
├── CODEOFCONDUCT.rst
├── .dependabot
│ └── config.yml
├── docs
│ ├── authors.rst
│ ├── changelog.rst
│ ├── codeofconduct.rst
│ ├── conf.py
│ ├── index.rst
│ ├── installation.rst
│ ├── make.bat
│ ├── Makefile
│ ├── readme.rst
│ ├── requirements.txt
│ └── usage.rst
├── .github
│ ├── ISSUE_TEMPLATE
│ │ ├── bug_report.md
│ │ ├── feature_request.md
│ │ └── general_question.md
│ ├── pull_request_template.md
│ └── workflows
│ ├── build_docs.yml
│ ├── build_package.yml
│ ├── java_checkstyle.yml
│ └── run_tests.yml
├── .gitignore
├── LICENSE
├── pom.xml
├── qube.cfg
├── .qube.yml
├── README.rst
├── .readthedocs.yml
├── src
│ ├── main
│ │ ├── java
│ │ │ └── life
│ │ │ └── qbic
│ │ │ └── gui
│ │ │ ├── SampleApplication.java
│ │ │ ├── SampleCommand.java
│ │ │ └── SampleEntryPoint.java
│ │ └── resources
│ │ ├── log4j2.xml
│ │ └── tool.properties
│ └── test
│ ├── java
│ │ └── life
│ │ └── qbic
│ │ └── gui
│ │ ├── SampleIntegrationTest.java
│ │ └── SampleTest.java
│ └── resources
│ ├── log4j2.xml
│ └── tool.properties
├── .travis.settings.xml
└── .travis.yml

If you are unfamiliar with specific files/file types, you may find them in our Newbie Guide to QBiC software.

Included frameworks/libraries

	Like all of QBiC’s JVM based projects, lib-java uses QBiC’s parent-pom [https://github.com/qbicsoftware/parent-poms].

	junit4 [https://junit.org/junit4/] is currently QBiC’s testing framework of choice.
If you require mocking for any integration tests or advanced command line tests, Mockito [https://site.mockito.org/] may be useful.

	Preconfigured ReadTheDocs [https://readthedocs.org/].

	Four Github workflows are shipped with the template

	build_docs.yml, which builds the ReadTheDocs [https://readthedocs.org/] documentation.

	build_package.yml, which builds the Maven [https://maven.apache.org/] based project.

	java_checkstyle.yml, which runs Checkstyle [https://checkstyle.sourceforge.io/] using Google’s Styleguides [https://github.com/checkstyle/checkstyle/blob/master/src/main/resources/google_checks.xml].

	run_test.yml, which runs all junit4 [https://junit.org/junit4/] tests.

	qube_lint.yml, which runs QUBE’s linting on the project.

	pr_to_master_from_development_only.yml which fails if the PR does not come from a release or hotfix branch

Usage

The main Maven [https://maven.apache.org/] commands such as mvn test, mvn verify, mvn package and more are used to test and package cli-java based projects.

portlet-groovy

Purpose

portlet-groovy is QBiC’s template for portlets. Portlets are pluggable user interface software components, which are managed and displayed in a web portal.

They are a major part of QBIC’s web presence.

Design

portlet-groovy follows the standard Maven project layout.

├── AUTHORS.rst
├── CHANGELOG.rst
├── CODEOFCONDUCT.rst
├── .dependabot
│ └── config.yml
├── docs
│ ├── authors.rst
│ ├── changelog.rst
│ ├── codeofconduct.rst
│ ├── conf.py
│ ├── index.rst
│ ├── installation.rst
│ ├── make.bat
│ ├── Makefile
│ ├── readme.rst
│ ├── requirements.txt
│ └── usage.rst
├── .github
│ ├── ISSUE_TEMPLATE
│ │ ├── bug_report.md
│ │ ├── feature_request.md
│ │ └── general_question.md
│ ├── pull_request_template.md
│ └── workflows
│ ├── build_docs.yml
│ ├── build_package.yml
│ ├── groovy_checkstyle.yml
│ └── run_tests.yml
├── .gitignore
├── LICENSE
├── pom.xml
├── qube.cfg
├── .qube.yml
├── README.rst
├── .readthedocs.yml
├── src
│ ├── main
│ │ ├── groovy
│ │ │ └── life.qbic.portal.portlet
│ │ │ └── SamplePortlet.groovy
│ │ ├── resources
│ │ │ ├── developer.properties.example
│ │ │ ├── .gitignore
│ │ │ ├── life
│ │ │ │ └── qbic
│ │ │ │ └── portal
│ │ │ │ └── portlet
│ │ │ │ └── AppWidgetSet.gwt.xml
│ │ │ ├── log4j2.xml
│ │ │ └── portlet.properties
│ │ └── webapp
│ │ ├── VAADIN
│ │ │ └── themes
│ │ │ └── mytheme
│ │ │ ├── addons.scss
│ │ │ ├── mytheme.scss
│ │ │ ├── styles.css
│ │ │ └── styles.scss
│ │ └── WEB-INF
│ │ ├── liferay-display.xml
│ │ ├── liferay-plugin-package.properties
│ │ ├── liferay-portlet.xml
│ │ ├── portlet.xml
│ │ └── web.xml
│ └── test
│ ├── java
│ │ └── life
│ │ └── qbic
│ │ └── portal
│ │ └── portlet
│ │ ├── SamplePortletIntegrationTest.java
│ │ └── SamplePortletTest.java
│ └── resources
│ ├── log4j2.xml
│ └── portlet.properties
├── .travis.settings.xml
└── .travis.yml

If you are unfamiliar with specific files/file types, you may find them in our Newbie Guide to QBiC software.

Included frameworks/libraries

During the creation you will be asked whether or not you want to use the

	openbis client. This will include the openbis-client-lib in your project.

	openbis raw api. This will include the openbis-api in your project.

	qbic databases. This will include the mariadb-java-client in your project.

	vaadin charts. This will include the vaadin-charts in your project.

	Like all of QBiC’s JVM based projects, lib-java uses QBiC’s parent-pom [https://github.com/qbicsoftware/parent-poms].

	junit4 [https://junit.org/junit4/] is currently QBiC’s testing framework of choice.
If you require mocking for any integration tests or advanced command line tests, Mockito [https://site.mockito.org/] may be useful.

	Preconfigured ReadTheDocs [https://readthedocs.org/].

	Three Github workflows are shipped with the template

	build_docs.yml, which builds the ReadTheDocs [https://readthedocs.org/] documentation.

	groovy_checkstyle.yml, which runs npm-groovy-lint [https://github.com/nvuillam/npm-groovy-lint], which can be seen as a wrapper around CodeNarc [https://codenarc.github.io/CodeNarc/].

	run_test.yml, which runs all junit4 [https://junit.org/junit4/] tests.

	qube_lint.yml, which runs QUBE’s linting on the project.

	pr_to_master_from_development_only.yml which fails iif the PR does not come from a release or hotfix branch

Usage

The main Maven [https://maven.apache.org/] commands such as mvn test, mvn verify, mvn package and more are used to test and package cli-java based projects.

portlet-groovy-osgi

Purpose

portlet-groovy-osgi is QBiC’s template for portlets. Portlets are pluggable user interface software components, which are managed and displayed in a web portal.

They are a major part of QBIC’s web presence.

The portlet is OSGi ready. The framework, into which the portlet is plugged, is independent of the portlet that is added and makes it more robust to changes.

Design

portlet-groovy-osgi follows the standard Maven project layout.

├── AUTHORS.rst
├── CHANGELOG.rst
├── CODEOFCONDUCT.rst
├── .dependabot
│ └── config.yml
├── docs
│ ├── authors.rst
│ ├── changelog.rst
│ ├── codeofconduct.rst
│ ├── conf.py
│ ├── index.rst
│ ├── installation.rst
│ ├── make.bat
│ ├── Makefile
│ ├── readme.rst
│ ├── requirements.txt
│ └── usage.rst
├── .github
│ ├── ISSUE_TEMPLATE
│ │ ├── bug_report.md
│ │ ├── feature_request.md
│ │ └── general_question.md
│ ├── pull_request_template.md
│ └── workflows
│ ├── build_docs.yml
│ ├── build_package.yml
│ ├── groovy_checkstyle.yml
│ └── run_tests.yml
├── .gitignore
├── LICENSE
├── pom.xml
├── qube.cfg
├── .qube.yml
├── README.rst
├── .readthedocs.yml
├── src
│ ├── main
│ │ ├── groovy
│ │ │ └── life.qbic.portal.portlet
│ │ │ └── AppTheme.groovy
│ │ │ └── SamplePortletUI.groovy
│ │ ├── resources
│ │ │ ├── developer.properties.example
│ │ │ ├── .gitignore
│ │ │ ├── life
│ │ │ │ └── qbic
│ │ │ │ └── portal
│ │ │ │ └── portlet
│ │ │ │ └── AppWidgetSet.gwt.xml
│ │ │ ├── log4j2.xml
│ │ │ └── portlet.properties
│ │ └── webapp
│ │ ├── VAADIN
│ │ │ └── themes
│ │ │ └── mytheme
│ │ │ ├── addons.scss
│ │ │ ├── mytheme.scss
│ │ │ ├── styles.css
│ │ │ └── styles.scss
│ │ └── WEB-INF
│ │ ├── liferay-display.xml
│ │ ├── liferay-plugin-package.properties
│ │ ├── liferay-portlet.xml
│ │ ├── portlet.xml
│ │ └── web.xml
│ └── test
│ ├── java
│ │ └── life
│ │ └── qbic
│ │ └── portal
│ │ └── portlet
│ │ ├── SamplePortletIntegrationTest.java
│ │ └── SamplePortletTest.java
│ └── resources
│ ├── log4j2.xml
│ └── portlet.properties
├── .travis.settings.xml
└── .travis.yml

If you are unfamiliar with specific files/file types, you may find them in our Newbie Guide to QBiC software.

Included frameworks/libraries

During the creation you will be asked whether or not you want to use the

	openbis client. This will include the openbis-client-lib in your project.

	openbis raw api. This will include the openbis-api in your project.

	qbic databases. This will include the mariadb-java-client in your project.

	vaadin charts. This will include the vaadin-charts in your project.

	Like all of QBiC’s JVM based projects, lib-java uses QBiC’s parent-pom [https://github.com/qbicsoftware/parent-poms].

	spock [http://spockframework.org/spock/docs/1.3/index.html] is currently QBiC’s testing framework of choice.
If you require mocking for any integration tests or advanced command line tests, Mockito [https://site.mockito.org/] may be useful.

	Preconfigured ReadTheDocs [https://readthedocs.org/].

	Three Github workflows are shipped with the template

	build_docs.yml, which builds the ReadTheDocs [https://readthedocs.org/] documentation.

	groovy_checkstyle.yml, which runs npm-groovy-lint [https://github.com/nvuillam/npm-groovy-lint], which can be seen as a wrapper around CodeNarc [https://codenarc.github.io/CodeNarc/].

	run_test.yml, which runs all junit4 [https://junit.org/junit4/] tests.

	qube_lint.yml, which runs QUBE’s linting on the project.

	pr_to_master_from_development_only.yml which fails if the PR does not come from a release or hotfix branch

Usage

The main Maven [https://maven.apache.org/] commands such as mvn test, mvn verify, mvn package and more are used to test and package cli-java based projects.

Shared FAQ

How do I setup Read the Docs?

qube ships with a full, production ready Read the Docs [https://readthedocs.org/] setup.
You need to import your documentation [https://docs.readthedocs.io/en/stable/intro/import-guide.html] on Read the Docs website.
Do not forget to sync your account first to see your repository.

What is Dependabot and how do I set it up?

Dependabot [https://dependabot.com/] is a service, which (for supported languages) automatically submits pull requests for dependency updates.
qube templates ship with dependabot configurations, if the language is supported by Dependabot.
To enable Dependabot you need to login (with your Github account) and add your repository (or enable Dependabot for all repositories).
Note that you need to do this for every organization separately. Dependabot will then pick up the configuration and start submitting pull requests!

How do I add a new template?

Please follow Adding new templates.

Adding new templates

Adding new templates is one of the major improvements to qube, which is why we are dedicating a whole section to it.
Please note that creating new templates is a time consuming task. So be prepared to invest a few hours to bring a new template to life.
The integration into qube however, is straight forward if you follow the guide below.
Due to the tight coupling of our templates with all qube commands such as create, list, info, lint and bump-version,
new templates require the modification of several files.

qube uses cookiecutter [https://cookiecutter.readthedocs.io/en/1.7.2/] to create all templates.
You need to familiarize yourself beforehand with cookiecutter to able to write templates, but don’t worry, it’s pretty easy and you usually get by with very few cookiecutter variables.
You can start with you very first cookiecutter template [https://cookiecutter.readthedocs.io/en/1.7.2/first_steps.html] and then simply see how the other existing qube templates are made and copy what you need.

The following sections will line out the requirements for new templates and guide you through the process of adding new templates step by step.
Nevertheless, we strongly encourage you to discuss your proposed template first with us in public via a Github issue.

Template requirements

To keep the standard of our templates high we enforce several standards, to which all templates must adhere.
Exceptions, where applicable, but they would have to be discussed beforehand. Hence, the term should.

	New templates should be novel.
We do not want a second cli-java template, but you are of course always invited to improve it. A new commandline library does not warrant an additional template, but rather modifications of the existing template with cookiecutter if statements.
However, distinct modifications of already existing templates may be eligible. An example would be to add a GUI template for a language, which does not yet have a GUI template.
Templates for domains, which we do not yet cover or additional languages to already existing domains are of course more than welcome.

	All templates must adhere to QBiC’s version standards. For example all JVM based templates must use the QBiC’s Java version (which is currently 8).

	All templates should build as automatically as possible and download all dependencies without manual intervention.

	All templates should have a testing and possibly mocking framework included.

	All templates should provide a readthedocs setup (include changelog and a codeofconduct), a README.rst file, a LICENSE, Github issue and pull request templates and a .gitignore file. Moreover, a .dependabot configuration should be present if applicable.
Note that most of these are already included in our common_files and do not need to be rewritten. More on that below.

	All templates must implement all required functionality to allow the application of all commands mentioned above to them, which includes a qube.cfg file, the template being in the available_templates.yml and more.

	All templates should have Github workflows, which at least build the documentation and the project.

	Every template should also have a workflow inside qube, which creates a project from the template with dummy values.

Step by step guide to adding new templates

Let’s assume that we are planning to add a new commandline Brainfuck [https://en.wikipedia.org/wiki/Brainfuck] template to qube.
We discussed our design at length with the core team and they approved our plan. For the sake of this tutorial we assume that the path / always points to /qube.
Hence, at this level we see cli.py and a folder per CLI command.

	Let’s add our brainfuck template information to /create/templates/available_templates.yml below the cli section.

cli:
 brainfuck:
 name: Brainfuck Commandline Tool
 handle: cli-brainfuck
 version: 0.0.1
 available libraries: none
 short description: Brainfuck Commandline tool with ANSI coloring
 long description: Amazing brainfuck tool, which can even show pretty unicorns in the console.
 Due to ANSI coloring support they can even be pink! Please someone send help.

	
Next, we add our brainfuck template to /create/templates

Note that it should adhere to the standards mentioned above and include all required files. Don’t forget to add a qube.cfg file to facilitate bump-version. See Configuration for details.
It is mandatory to name the top level folder {{ cookiecutter.project_slug }}, which ensures that the project after creation will have a proper name.
Furthermore, the cookiecutter.json file should have at least the following variables:

{
"full_name": "Homer Simpson",
"email": "homer.simpson@posteo.net",
"project_name": "sample-cli",
"project_slug": "sample-cli",
"version": "1.0.0",
"project_short_description": "Command-line utility to...",
"github_username": "homer_github"
}

The file tree of the template should resemble

├── cookiecutter.json
└── {{ cookiecutter.project_slug }}
 ├── docs
 │ ├── installation.rst
 │ └── usage.rst
 ├── .github
 │ └── workflows
 │ └── build_brainfuck.yml
 ├── hello.bf
 ├── qube.cfg
 └── README.rst

	
Now it is time to subclass the TemplateCreator to implement all required functions to create our template!

Let’s edit /create/domains/cli_creator.py. Note that for new domains you would simply create a new file called DomainCreator.

In this case we suggest to simply copy the code of an existing Creator and adapt it to the new domain. Your new domain may make use of other creation functions instead of create_template_without_subdomain, if they for example contain subdomains. You can examine create/TemplatorCreator.py to see what’s available. You may also remove functions such as the creation of common files.

If we have any brainfuck specific cookiecutter variables that we need to populate, we may add them to the TemplateStructCli.

Our brainfuck templates does not have them, so we just leave it as is.

For the next step we simply go through the CliCreator class and add our brainfuck template where required. Moreover, we implement a cli_brainfuck_options function, which we use to prompt for template specific cookiecutter variables.

@dataclass
class TemplateStructCli(MlfcoreTemplateStruct):
 """
 Intended Use: This class holds all attributes specific for CLI projects
 """

 """____BRAINFUCK___"""

class CliCreator(TemplateCreator):

 def __init__(self):
 self.cli_struct = TemplateStructCli(domain='cli')
 super().__init__(self.cli_struct)
 self.WD = os.path.dirname(__file__)
 self.WD_Path = Path(self.WD)
 self.TEMPLATES_CLI_PATH = f'{self.WD_Path.parent}/templates/cli'

 '"" TEMPLATE VERSIONS ""'
 self.CLI_BRAINFUCK_TEMPLATE_VERSION = super().load_version('cli-brainfuck')

 def create_template(self, dot_qube: dict or None):
 """
 Handles the CLI domain. Prompts the user for the language, general and domain specific options.
 """

 self.cli_struct.language = qube_questionary_or_dot_qube(function='select',
 question='Choose the project\'s primary language',
 choices=['brainfuck'],
 default='python',
 dot_qube=dot_qube,
 to_get_property='language')

 # prompt the user to fetch general template configurations
 super().prompt_general_template_configuration(dot_qube)

 # switch case statement to prompt the user to fetch template specific configurations
 switcher = {
 'brainfuck': self.cli_brainfuck_options
 }
 switcher.get(self.cli_struct.language)(dot_qube)

 self.cli_struct.is_github_repo, \
 self.cli_struct.is_repo_private, \
 self.cli_struct.is_github_orga, \
 self.cli_struct.github_orga \
 = prompt_github_repo(dot_qube)

 if self.cli_struct.is_github_orga:
 self.cli_struct.github_username = self.cli_struct.github_orga

 # create the chosen and configured template
 super().create_template_without_subdomain(f'{self.TEMPLATES_CLI_PATH}')

 # switch case statement to fetch the template version
 switcher_version = {
 'brainfuck': self.CLI_BRAINFUCK_TEMPLATE_VERSION
 }
 self.cli_struct.template_version, self.cli_struct.template_handle = switcher_version.get(
 self.cli_struct.language.lower()), f'cli-{self.cli_struct.language.lower()}'

 super().process_common_operations(domain='cli', language=self.cli_struct.language, dot_qube=dot_qube)

 [...]

 def cli_brainfuck_options(self):
 """ Prompts for cli-brainfuck specific options and saves them into the MlfcoreTemplateStruct """
 pass

	
If a new template were added we would also have to import our new Creator in create/create.py and add the new domain to the domain prompt and the switcher.

However, in this case we can simply skip this step, since cli is already included.

def choose_domain(domain: str):
 """
 Prompts the user for the template domain.
 Creates the .qube.yml file.
 Prompts the user whether or not to create a Github repository
 :param domain: Template domain
 """
 if not domain:
 domain = click.prompt('Choose between the following domains',
 type=click.Choice(['cli']))

 switcher = {
 'cli': CliCreator,
 }

 creator_obj = switcher.get(domain.lower())()
 creator_obj.create_template()

	
Linting is up next! We need to ensure that our brainfuck template always adheres to the highest standards! Let’s edit lint/domains/cli.py.

We need to add a new class, which inherits from TemplateLinter and add our linting functions to it.

class CliBrainfuckLint(TemplateLinter, metaclass=GetLintingFunctionsMeta):
 def __init__(self, path):
 super().__init__(path)

 def lint(self):
 super().lint_project(self, self.methods)

 def brainfuck_files_exist(self) -> None:
 """
 Checks a given pipeline directory for required files.
 Iterates through the templates's directory content and checkmarks files for presence.
 Files that **must** be present::
 'hello.bf',
 Files that *should* be present::
 '.github/workflows/build_brainfuck.yml',
 Files that *must not* be present::
 none
 Files that *should not* be present::
 none
 """

 # NB: Should all be files, not directories
 # List of lists. Passes if any of the files in the sublist are found.
 files_fail = [
 ['hello.bf'],
]
 files_warn = [
 [os.path.join('.github', 'workflows', 'build_brainfuck.yml')],
]

 # List of strings. Fails / warns if any of the strings exist.
 files_fail_ifexists = [

]
 files_warn_ifexists = [

]

 files_exist_linting(self, files_fail, files_fail_ifexists, files_warn, files_warn_ifexists)

We need to ensure that our new linting function is found when linting is applied. Therefore, we turn our eyes to lint/lint.py, import our CliBrainfuckLinter and add it to the switcher.

from qube.lint.domains.cli import CliBrainfuckLint

switcher = {
 'cli-brainfuck': CliBrainfuckLint,
}

Our shiny new CliBrainfuckLinter is now ready for action!

	
The only thing left to do now is to add a new Github Actions workflow for our template. Let’s go one level up in the folder tree and create .github/workflows/create_cli_brainfuck.yml.

We want to ensure that if we change something in our template, that it still builds!

 name: Create cli-brainfuck Template

 on: [push]

 jobs:
 build:

 runs-on: ubuntu-latest
 strategy:
 matrix:
 python: [3.7, 3.8]

 steps:
 - uses: actions/checkout@v2
 name: Check out source-code repository

 - name: Setup Python
 uses: actions/setup-python@v1
 with:
 python-version: ${{ matrix.python }}

 - name: Build qube
 run: |
 python setup.py clean --all install

 - name: Create cli-brainfuck Template
 run: |
 echo -e "\n\n\n\n\nn\n\n\n\nn" | qube create

 - name: Build Package
 uses: fabasoad/setup-brainfuck-action@master
 with:
 version: 0.1.dev1
 - name: Hello World
 run: |
 brainfucky --file ExplodingSpringfield/hello.bf

We were pleasently surprised to see that someone already made a Github Action for brainfuck.

	
Finally, we add some documentation to /docs/available_templates.rst and explain the purpose, design and frameworks/libraries.

That’s it! We should now be able to try out your new template using qube create
The template should be creatable, it should automatically lint after the creation and Github support should be enabled as well! If we run qube list
Our new template should show up as well!
I’m sure that you noticed that there’s not actually a brainfuck template in qube (yet!).

To quote our mighty Math professors: ‘We’ll leave this as an exercise to the reader.’

Troubleshooting

All currently known issues can be found on our Github issue tracker. If there are any major known issues they will be listed here.

Changelog

This project adheres to Semantic Versioning [https://semver.org/].

2.6.1 (2020-11-06)

Added

	Add report generation script to common files

Fixed

Dependencies

Deprecated

2.6.0 (2020-10-27)

Added

	Add template for OSGi Groovy library bundles

	Add template for OSGi Groovy portlet bundles

Fixed

	Fix missing license property bug, that showed up if the license placeholder was referenced in a template.

Dependencies

Deprecated

	Java 8, templates now build with JDK 11.

2.5.1 (2020-10-16)

Added

Fixed

	qube lint now wraps too long lines

Dependencies

Deprecated

2.5.0 (2020-10-06)

Added

	verbose support #186

Fixed

	sync workflow now polls instead of being triggered on push #170

	renamed branch protection workflow #190

	refactored sync command

	Faster build time by fixing the order of Maven repositories for dependency resolving

	Ignore rule for Vaadin widgetsets

Dependencies

Deprecated

2.4.6 (2020-10-02)

Added

Fixed

	Fix missing properties for portlet domain

	Fix #169

Dependencies

Deprecated

2.4.5 (2020-10-02)

Added

	Ignores additional Maven files

Fixed

	Preserve boolean case when loading YAML boolean values

	Force push changes to the TEMPLATE branch during sync

Dependencies

Deprecated

2.4.4 (2020-10-02)

Added

Fixed

	Fix the pull request creation after updating syncing the TEMPLATE branch. Qube reported a FileNotFoundError for the sync workflow file, because it tried to access this file in an empty directory.

	Removed redundant sync_workflow workarounds

	sync and maven test workflow yaml syntax

Dependencies

Deprecated

2.4.3 (2020-10-01)

Added

Fixed

	Sets correct repo owner for the qube sync

Dependencies

Deprecated

2.4.2 (2020-10-01)

Added

	Enables debug logging

Fixed

Dependencies

Deprecated

2.4.1 (2020-10-01)

Added

Fixed

Dependencies

	Updated parent pom to 3.1.1

	Updated template versions to 1.0.1

Deprecated

2.4.0 (2020-10-01)

Added

	Now using Johnny5 for the sync workflow by default

	Maven caching for tests

Fixed

	Add all src/main/webapp/VAADIN/widgetsets folders to .gitignore

	Makefile now uses pip instead of setup.py by default

Dependencies

Deprecated

2.3.0 (2020-09-28)

Added

	Added release deployment GA workflow for JVM templates

	Added workflow to build software reports and internal documentation

Fixed

	Fixed parent-pom version being outdated -> 3.1.0

	Fixed further outdated dependencies in various poms

	Fixed release URL in all poms

	Allow PR from ‘hotfix’ branches

Dependencies

Deprecated

	Removed PR allowance from patch branches

	Removed Travis CI support

2.2.0 (2020-08-21)

Added

Fixed

	Couple of docs fixes

	Now always using hyphens for options

Dependencies

Deprecated

2.1.0 (2020-08-21)

Added

	Option to config –view to get the current set configuration

	Option –set_token to set the sync token again

	Sync docs improved

	Support for QUBE TODO: and TODO QUBE:

Fixed

	Sync for organization repositories

Dependencies

Deprecated

2.0.0 (2020-08-17)

Added

	Strong code refactoring overhauling everything

	Added config command to recreate config files

	Added upgrade command to update qube itself

	Added sync command to sync a qube project

	Help messages are now custom

	Bump-version lints versions before updating

	Added a metaclass to fetch all linting functions

	Master requires PR review & no stale PRs

	Greatly improved the documentation

	Much more…

Fixed

	PR check WF now correctly requires PRs to master to be from patch or release branches

Dependencies

	Too many updates to jot down…!

Deprecated

1.4.1 (2020-05-23)

Added

Fixed

	Reverted simplified common files copying, since it broke Github support

Dependencies

Deprecated

1.4.0 (2020-05-23)

Added

	Added Rich for tracebacks & nice tables

	New ASCII Art!

Fixed

Dependencies

Deprecated

1.3.2 (2020-05-22)

Added

	Strongly simplified common files copying

	info now automatically reruns the most similar handle

Fixed

Dependencies

Deprecated

1.3.1 (2020-05-20)

Added

	Checking whether project already exists on readthedocs

Fixed

	bump-version SNAPSHOT handling strongly improved

Dependencies

	requests==2.23.0 added

	packaging==20.4 added

Deprecated

1.3.0 (2020-05-20)

Added

	bump-version now supports SNAPSHOTS

	documentation about 4 portlet prompts

	new COOKIETEMPLE docs css

Fixed

	Tests GHW names

Dependencies

Deprecated

1.2.1 (2020-05-03)

Added

	Refactored docs into common files

Fixed

Dependencies

Deprecated

1.2.0 (2020-05-03)

Added

	QUBE linting workflow for all templates

	PR to master from development only WF

	custom COOKIETEMPLE css

Fixed

	setup.py development status

	max width for docs for all templates

	PyPi badge is now green

Dependencies

	flake 3.7.9 -> 3.8.1

Deprecated

1.1.0 (2020-05-03)

Added

	The correct version tag :)

Fixed

	Readthedocs width is now

Dependencies

Deprecated

1.0.0 (2020-05-03)

Added

	Created the project using COOKIETEMPLE

	Added create, list, info, bump-version, lint based on COOKIETEPLE

	Added cli-java template

	Added lib-java template

	Added gui-java template

	Added service-java template

	Added portlet-groovy template

Fixed

Dependencies

Deprecated

Credits

Development Lead

	Lukas Heumos <lukas.heumos@posteo.net>

Contributors

All of QBiC Software

Contributor Covenant Code of Conduct

Our Pledge

In the interest of fostering an open and welcoming environment, we as
contributors and maintainers pledge to making participation in our project and
our community a harassment-free experience for everyone, regardless of age, body
size, disability, ethnicity, sex characteristics, gender identity and
expression, level of experience, education, socio-economic status, nationality,
personal appearance, race, religion, or sexual identity and orientation.

Our Standards

Examples of behavior that contributes to creating a positive environment
include:

	Using welcoming and inclusive language

	Being respectful of differing viewpoints and experiences

	Gracefully accepting constructive criticism

	Focusing on what is best for the community

	Showing empathy towards other community members

Examples of unacceptable behavior by participants include:

	The use of sexualized language or imagery and unwelcome sexual attention or advances

	Trolling, insulting/derogatory comments, and personal or political attacks

	Public or private harassment

	Publishing others’ private information, such as a physical or electronic
address, without explicit permission

	Other conduct which could reasonably be considered inappropriate in a
professional setting

Our Responsibilities

Maintainers are responsible for clarifying the standards of acceptable behavior
and are expected to take appropriate and fair corrective action in response to
any instances of unacceptable behavior.

Maintainers have the right and responsibility to remove, edit, or reject
comments, commits, code, wiki edits, issues, and other contributions that are
not aligned to this Code of Conduct, or to ban temporarily or permanently any
contributor for other behaviors that they deem inappropriate, threatening,
offensive, or harmful.

Scope

This Code of Conduct applies both within project spaces and in public spaces
when an individual is representing the project or its community. Examples of
representing a project or community include using an official project e-mail
address, posting via an official social media account, or acting as an appointed
representative at an online or offline event. Representation of a project may be
further defined and clarified by project maintainers.

Enforcement

Instances of abusive, harassing, or otherwise unacceptable behavior may
be reported by opening an issue. The project team
will review and investigate all complaints, and will respond in a way
that it deems appropriate to the circumstances. The project team is
obligated to maintain confidentiality with regard to the reporter of an
incident. Further details of specific enforcement policies may be posted
separately.

Project maintainers who do not follow or enforce the Code of Conduct in
good faith may face temporary or permanent repercussions as determined
by other members of the project’s leadership.

Attribution

This Code of Conduct is adapted from the Contributor Covenant, version 1.4,
available at https://www.contributor-covenant.org/version/1/4/code-of-conduct.html

Index

cli-java

Purpose

cli-java is the template of choice for picocli [https://picocli.info/] based command line applications, which require a JVM and the related ecosystem (e.g. due to requirement to use OpenBIS).

These applications result in jars and can therefore only be started when a JDK is present. They do not ship with custom JREs!

Therefore, if you are not bound to the JVM ecosystem, it may be a better idea to go for Python based projects, since Python is installed and available on every Unix machine.

QUBE currently does not offer a cli-python template, but you may make use of COOKIETEMPLE’s cli-python [https://cookietemple.com].

Design

This template follows the standard Maven project layout.

├── AUTHORS.rst
├── CHANGELOG.rst
├── CODEOFCONDUCT.rst
├── .dependabot
│ └── config.yml
├── docs
│ ├── authors.rst
│ ├── changelog.rst
│ ├── codeofconduct.rst
│ ├── conf.py
│ ├── index.rst
│ ├── installation.rst
│ ├── make.bat
│ ├── Makefile
│ ├── readme.rst
│ ├── requirements.txt
│ └── usage.rst
├── .github
│ ├── ISSUE_TEMPLATE
│ │ ├── bug_report.md
│ │ ├── feature_request.md
│ │ └── general_question.md
│ ├── pull_request_template.md
│ └── workflows
│ ├── build_docs.yml
│ ├── build_package.yml
│ ├── java_checkstyle.yml
│ └── run_tests.yml
├── .gitignore
├── LICENSE
├── pom.xml
├── qube.cfg
├── .qube.yml
├── README.rst
├── .readthedocs.yml
├── src
│ ├── main
│ │ ├── java
│ │ │ └── life
│ │ │ └── qbic
│ │ │ └── cli
│ │ │ ├── SampleCommand.java
│ │ │ ├── SampleEntryPoint.java
│ │ │ └── SampleTool.java
│ │ └── resources
│ │ ├── log4j2.xml
│ │ └── tool.properties
│ └── test
│ ├── java
│ │ └── life
│ │ └── qbic
│ │ └── cli
│ │ ├── SampleIntegrationTest.java
│ │ └── SampleTest.java
│ └── resources
│ ├── log4j2.xml
│ └── tool.properties
├── .travis.settings.xml
└── .travis.yml

If you are unfamiliar with specific files/file types, you may find them in our Newbie Guide to QBiC software.

Included frameworks/libraries

	Like all of QBiC’s JVM based projects, cli-java uses QBiC’s parent-pom [https://github.com/qbicsoftware/parent-poms].

	cli-java uses picocli [https://picocli.info/] to expose the commandline parameters to the user.

	junit4 [https://junit.org/junit4/] is currently QBiC’s testing framework of choice.
If you require mocking for any integration tests or advanced command line tests, Mockito [https://site.mockito.org/] may be useful.

	Preconfigured ReadTheDocs [https://readthedocs.org/].

	Four Github workflows are shipped with the template

	build_docs.yml, which builds the ReadTheDocs [https://readthedocs.org/] documentation.

	build_package.yml, which builds the Maven [https://maven.apache.org/] based project.

	java_checkstyle.yml, which runs Checkstyle [https://checkstyle.sourceforge.io/] using Google’s Styleguides [https://github.com/checkstyle/checkstyle/blob/master/src/main/resources/google_checks.xml].

	run_test.yml, which runs all junit4 [https://junit.org/junit4/] tests.

	qube_lint.yml, which runs QUBE’s linting on the project.

	pr_to_master_from_development_only.yml which fails if the PR does not come from a release or hotfix branch

Usage

The main Maven [https://maven.apache.org/] commands such as mvn test, mvn verify, mvn package and more are used to test and package cli-java based projects.

gui-java

Purpose

gui-java is QBiC’s choice for all templates, which require a Desktop user interface. Hence, the application is not necessarily on the web.

The GUI framework of choice is JavaFX 8 [https://openjfx.io/]. Be aware that most of the documentation has already moved past version 8.

Design

gui-java follows the standard Maven project layout.

├── AUTHORS.rst
├── CHANGELOG.rst
├── CODEOFCONDUCT.rst
├── .dependabot
│ └── config.yml
├── docs
│ ├── authors.rst
│ ├── changelog.rst
│ ├── codeofconduct.rst
│ ├── conf.py
│ ├── index.rst
│ ├── installation.rst
│ ├── make.bat
│ ├── Makefile
│ ├── readme.rst
│ ├── requirements.txt
│ └── usage.rst
├── .github
│ ├── ISSUE_TEMPLATE
│ │ ├── bug_report.md
│ │ ├── feature_request.md
│ │ └── general_question.md
│ ├── pull_request_template.md
│ └── workflows
│ ├── build_docs.yml
│ ├── build_package.yml
│ ├── java_checkstyle.yml
│ └── run_tests.yml
├── .gitignore
├── LICENSE
├── pom.xml
├── qube.cfg
├── .qube.yml
├── README.rst
├── .readthedocs.yml
├── src
│ ├── main
│ │ ├── java
│ │ │ └── life
│ │ │ └── qbic
│ │ │ └── gui
│ │ │ ├── SampleApplication.java
│ │ │ ├── SampleCommand.java
│ │ │ └── SampleEntryPoint.java
│ │ └── resources
│ │ ├── log4j2.xml
│ │ └── tool.properties
│ └── test
│ ├── java
│ │ └── life
│ │ └── qbic
│ │ └── gui
│ │ ├── SampleIntegrationTest.java
│ │ └── SampleTest.java
│ └── resources
│ ├── log4j2.xml
│ └── tool.properties
├── .travis.settings.xml
└── .travis.yml

If you are unfamiliar with specific files/file types, you may find them in our Newbie Guide to QBiC software.

Included frameworks/libraries

	Like all of QBiC’s JVM based projects, lib-java uses QBiC’s parent-pom [https://github.com/qbicsoftware/parent-poms].

	gui-java uses JavaFX 8 [https://openjfx.io/] to build the graphical user interface.

	junit4 [https://junit.org/junit4/] is currently QBiC’s testing framework of choice.
If you require mocking for any integration tests or advanced command line tests, Mockito [https://site.mockito.org/] may be useful.

	Preconfigured ReadTheDocs [https://readthedocs.org/].

	Four Github workflows are shipped with the template

	build_docs.yml, which builds the ReadTheDocs [https://readthedocs.org/] documentation.

	build_package.yml, which builds the Maven [https://maven.apache.org/] based project.

	java_checkstyle.yml, which runs Checkstyle [https://checkstyle.sourceforge.io/] using Google’s Styleguides [https://github.com/checkstyle/checkstyle/blob/master/src/main/resources/google_checks.xml].

	run_test.yml, which runs all junit4 [https://junit.org/junit4/] tests.

	qube_lint.yml, which runs QUBE’s linting on the project.

	pr_to_master_from_development_only.yml which fails if the PR does not come from a release or hotfix branch

Usage

The main Maven [https://maven.apache.org/] commands such as mvn test, mvn verify, mvn package and more are used to test and package cli-java based projects.

lib-groovy

Purpose

lib-groovy is by design more open end than the other templates.
The goal of a cli-lib project is not to be run as a standalone, but rather to be included as a library in other JVM based projects.

Design

lib-groovy follows the standard Maven project layout.

├── AUTHORS.rst
├── CHANGELOG.rst
├── CODEOFCONDUCT.rst
├── .dependabot
│ └── config.yml
├── docs
│ ├── authors.rst
│ ├── changelog.rst
│ ├── codeofconduct.rst
│ ├── conf.py
│ ├── index.rst
│ ├── installation.rst
│ ├── make.bat
│ ├── Makefile
│ ├── readme.rst
│ ├── requirements.txt
│ └── usage.rst
├── .github
│ ├── ISSUE_TEMPLATE
│ │ ├── bug_report.md
│ │ ├── feature_request.md
│ │ └── general_question.md
│ ├── pull_request_template.md
│ └── workflows
│ ├── build_docs.yml
│ ├── build_package.yml
│ ├── java_checkstyle.yml
│ └── run_tests.yml
├── .gitignore
├── LICENSE
├── pom.xml
├── qube.cfg
├── .qube.yml
├── README.rst
├── .readthedocs.yml
├── src
│ ├── main
│ │ ├── groovy
│ │ │ └── life
│ │ │ └── qbic
│ │ │ └── package-info.java
│ │ └── resources
│ │ └── .gitignore
│ └── test
│ ├── groovy
│ │ └── life
│ │ └── qbic
│ │ └── package-info.java
│ └── resources
│ └── log4j2.xml
├── .travis.settings.xml
└── .travis.yml

If you are unfamiliar with specific files/file types, you may find them in our Newbie Guide to QBiC software.

Included frameworks/libraries

	Unlike all of QBiC’s JVM based projects, lib-groovy does not use QBiC’s parent-pom [https://github.com/qbicsoftware/parent-poms] for now.

	spock [http://spockframework.org/spock/docs/1.3/index.html/] is currently QBiC’s testing framework of choice.
If you require mocking for any integration tests or advanced command line tests, Mockito [https://site.mockito.org/] may be useful.

	Preconfigured ReadTheDocs [https://readthedocs.org/].

	Four Github workflows are shipped with the template

	build_docs.yml, which builds the ReadTheDocs [https://readthedocs.org/] documentation.

	build_package.yml, which builds the Maven [https://maven.apache.org/] based project.

	java_checkstyle.yml, which runs Checkstyle [https://checkstyle.sourceforge.io/] using Google’s Styleguides [https://github.com/checkstyle/checkstyle/blob/master/src/main/resources/google_checks.xml].

	run_test.yml, which runs all junit4 [https://junit.org/junit4/] tests.

	qube_lint.yml, which runs QUBE’s linting on the project.

	pr_to_master_from_development_only.yml which fails if the PR does not come from a release or hotfix branch

Usage

The main Maven [https://maven.apache.org/] commands such as mvn test, mvn verify, mvn package and more are used to test and package cli-groovy based projects.

lib-java

Purpose

cli-lib is by design more open end than the other templates.
The goal of a cli-lib project is not to be run as a standalone, but rather to be included as a library in other JVM based projects.

Design

lib-java follows the standard Maven project layout.

├── AUTHORS.rst
├── CHANGELOG.rst
├── CODEOFCONDUCT.rst
├── .dependabot
│ └── config.yml
├── docs
│ ├── authors.rst
│ ├── changelog.rst
│ ├── codeofconduct.rst
│ ├── conf.py
│ ├── index.rst
│ ├── installation.rst
│ ├── make.bat
│ ├── Makefile
│ ├── readme.rst
│ ├── requirements.txt
│ └── usage.rst
├── .github
│ ├── ISSUE_TEMPLATE
│ │ ├── bug_report.md
│ │ ├── feature_request.md
│ │ └── general_question.md
│ ├── pull_request_template.md
│ └── workflows
│ ├── build_docs.yml
│ ├── build_package.yml
│ ├── java_checkstyle.yml
│ └── run_tests.yml
├── .gitignore
├── LICENSE
├── pom.xml
├── qube.cfg
├── .qube.yml
├── README.rst
├── .readthedocs.yml
├── src
│ ├── main
│ │ ├── java
│ │ │ └── life
│ │ │ └── qbic
│ │ │ └── package-info.java
│ │ └── resources
│ │ └── .gitignore
│ └── test
│ ├── java
│ │ └── life
│ │ └── qbic
│ │ └── package-info.java
│ └── resources
│ └── log4j2.xml
├── .travis.settings.xml
└── .travis.yml

If you are unfamiliar with specific files/file types, you may find them in our Newbie Guide to QBiC software.

Included frameworks/libraries

	Like all of QBiC’s JVM based projects, lib-java uses QBiC’s parent-pom [https://github.com/qbicsoftware/parent-poms].

	junit4 [https://junit.org/junit4/] is currently QBiC’s testing framework of choice.
If you require mocking for any integration tests or advanced command line tests, Mockito [https://site.mockito.org/] may be useful.

	Preconfigured ReadTheDocs [https://readthedocs.org/].

	Four Github workflows are shipped with the template

	build_docs.yml, which builds the ReadTheDocs [https://readthedocs.org/] documentation.

	build_package.yml, which builds the Maven [https://maven.apache.org/] based project.

	java_checkstyle.yml, which runs Checkstyle [https://checkstyle.sourceforge.io/] using Google’s Styleguides [https://github.com/checkstyle/checkstyle/blob/master/src/main/resources/google_checks.xml].

	run_test.yml, which runs all junit4 [https://junit.org/junit4/] tests.

	qube_lint.yml, which runs QUBE’s linting on the project.

	pr_to_master_from_development_only.yml which fails if the PR does not come from a release or hotfix branch

Usage

The main Maven [https://maven.apache.org/] commands such as mvn test, mvn verify, mvn package and more are used to test and package cli-java based projects.

portlet-groovy

Purpose

portlet-groovy is QBiC’s template for portlets. Portlets are pluggable user interface software components, which are managed and displayed in a web portal.

They are a major part of QBIC’s web presence.

Design

portlet-groovy follows the standard Maven project layout.

├── AUTHORS.rst
├── CHANGELOG.rst
├── CODEOFCONDUCT.rst
├── .dependabot
│ └── config.yml
├── docs
│ ├── authors.rst
│ ├── changelog.rst
│ ├── codeofconduct.rst
│ ├── conf.py
│ ├── index.rst
│ ├── installation.rst
│ ├── make.bat
│ ├── Makefile
│ ├── readme.rst
│ ├── requirements.txt
│ └── usage.rst
├── .github
│ ├── ISSUE_TEMPLATE
│ │ ├── bug_report.md
│ │ ├── feature_request.md
│ │ └── general_question.md
│ ├── pull_request_template.md
│ └── workflows
│ ├── build_docs.yml
│ ├── build_package.yml
│ ├── groovy_checkstyle.yml
│ └── run_tests.yml
├── .gitignore
├── LICENSE
├── pom.xml
├── qube.cfg
├── .qube.yml
├── README.rst
├── .readthedocs.yml
├── src
│ ├── main
│ │ ├── groovy
│ │ │ └── life.qbic.portal.portlet
│ │ │ └── SamplePortlet.groovy
│ │ ├── resources
│ │ │ ├── developer.properties.example
│ │ │ ├── .gitignore
│ │ │ ├── life
│ │ │ │ └── qbic
│ │ │ │ └── portal
│ │ │ │ └── portlet
│ │ │ │ └── AppWidgetSet.gwt.xml
│ │ │ ├── log4j2.xml
│ │ │ └── portlet.properties
│ │ └── webapp
│ │ ├── VAADIN
│ │ │ └── themes
│ │ │ └── mytheme
│ │ │ ├── addons.scss
│ │ │ ├── mytheme.scss
│ │ │ ├── styles.css
│ │ │ └── styles.scss
│ │ └── WEB-INF
│ │ ├── liferay-display.xml
│ │ ├── liferay-plugin-package.properties
│ │ ├── liferay-portlet.xml
│ │ ├── portlet.xml
│ │ └── web.xml
│ └── test
│ ├── java
│ │ └── life
│ │ └── qbic
│ │ └── portal
│ │ └── portlet
│ │ ├── SamplePortletIntegrationTest.java
│ │ └── SamplePortletTest.java
│ └── resources
│ ├── log4j2.xml
│ └── portlet.properties
├── .travis.settings.xml
└── .travis.yml

If you are unfamiliar with specific files/file types, you may find them in our Newbie Guide to QBiC software.

Included frameworks/libraries

During the creation you will be asked whether or not you want to use the

	openbis client. This will include the openbis-client-lib in your project.

	openbis raw api. This will include the openbis-api in your project.

	qbic databases. This will include the mariadb-java-client in your project.

	vaadin charts. This will include the vaadin-charts in your project.

	Like all of QBiC’s JVM based projects, lib-java uses QBiC’s parent-pom [https://github.com/qbicsoftware/parent-poms].

	junit4 [https://junit.org/junit4/] is currently QBiC’s testing framework of choice.
If you require mocking for any integration tests or advanced command line tests, Mockito [https://site.mockito.org/] may be useful.

	Preconfigured ReadTheDocs [https://readthedocs.org/].

	Three Github workflows are shipped with the template

	build_docs.yml, which builds the ReadTheDocs [https://readthedocs.org/] documentation.

	groovy_checkstyle.yml, which runs npm-groovy-lint [https://github.com/nvuillam/npm-groovy-lint], which can be seen as a wrapper around CodeNarc [https://codenarc.github.io/CodeNarc/].

	run_test.yml, which runs all junit4 [https://junit.org/junit4/] tests.

	qube_lint.yml, which runs QUBE’s linting on the project.

	pr_to_master_from_development_only.yml which fails iif the PR does not come from a release or hotfix branch

Usage

The main Maven [https://maven.apache.org/] commands such as mvn test, mvn verify, mvn package and more are used to test and package cli-java based projects.

portlet-groovy-osgi

Purpose

portlet-groovy-osgi is QBiC’s template for portlets. Portlets are pluggable user interface software components, which are managed and displayed in a web portal.

They are a major part of QBIC’s web presence.

The portlet is OSGi ready. The framework, into which the portlet is plugged, is independent of the portlet that is added and makes it more robust to changes.

Design

portlet-groovy-osgi follows the standard Maven project layout.

├── AUTHORS.rst
├── CHANGELOG.rst
├── CODEOFCONDUCT.rst
├── .dependabot
│ └── config.yml
├── docs
│ ├── authors.rst
│ ├── changelog.rst
│ ├── codeofconduct.rst
│ ├── conf.py
│ ├── index.rst
│ ├── installation.rst
│ ├── make.bat
│ ├── Makefile
│ ├── readme.rst
│ ├── requirements.txt
│ └── usage.rst
├── .github
│ ├── ISSUE_TEMPLATE
│ │ ├── bug_report.md
│ │ ├── feature_request.md
│ │ └── general_question.md
│ ├── pull_request_template.md
│ └── workflows
│ ├── build_docs.yml
│ ├── build_package.yml
│ ├── groovy_checkstyle.yml
│ └── run_tests.yml
├── .gitignore
├── LICENSE
├── pom.xml
├── qube.cfg
├── .qube.yml
├── README.rst
├── .readthedocs.yml
├── src
│ ├── main
│ │ ├── groovy
│ │ │ └── life.qbic.portal.portlet
│ │ │ └── AppTheme.groovy
│ │ │ └── SamplePortletUI.groovy
│ │ ├── resources
│ │ │ ├── developer.properties.example
│ │ │ ├── .gitignore
│ │ │ ├── life
│ │ │ │ └── qbic
│ │ │ │ └── portal
│ │ │ │ └── portlet
│ │ │ │ └── AppWidgetSet.gwt.xml
│ │ │ ├── log4j2.xml
│ │ │ └── portlet.properties
│ │ └── webapp
│ │ ├── VAADIN
│ │ │ └── themes
│ │ │ └── mytheme
│ │ │ ├── addons.scss
│ │ │ ├── mytheme.scss
│ │ │ ├── styles.css
│ │ │ └── styles.scss
│ │ └── WEB-INF
│ │ ├── liferay-display.xml
│ │ ├── liferay-plugin-package.properties
│ │ ├── liferay-portlet.xml
│ │ ├── portlet.xml
│ │ └── web.xml
│ └── test
│ ├── java
│ │ └── life
│ │ └── qbic
│ │ └── portal
│ │ └── portlet
│ │ ├── SamplePortletIntegrationTest.java
│ │ └── SamplePortletTest.java
│ └── resources
│ ├── log4j2.xml
│ └── portlet.properties
├── .travis.settings.xml
└── .travis.yml

If you are unfamiliar with specific files/file types, you may find them in our Newbie Guide to QBiC software.

Included frameworks/libraries

During the creation you will be asked whether or not you want to use the

	openbis client. This will include the openbis-client-lib in your project.

	openbis raw api. This will include the openbis-api in your project.

	qbic databases. This will include the mariadb-java-client in your project.

	vaadin charts. This will include the vaadin-charts in your project.

	Like all of QBiC’s JVM based projects, lib-java uses QBiC’s parent-pom [https://github.com/qbicsoftware/parent-poms].

	spock [http://spockframework.org/spock/docs/1.3/index.html] is currently QBiC’s testing framework of choice.
If you require mocking for any integration tests or advanced command line tests, Mockito [https://site.mockito.org/] may be useful.

	Preconfigured ReadTheDocs [https://readthedocs.org/].

	Three Github workflows are shipped with the template

	build_docs.yml, which builds the ReadTheDocs [https://readthedocs.org/] documentation.

	groovy_checkstyle.yml, which runs npm-groovy-lint [https://github.com/nvuillam/npm-groovy-lint], which can be seen as a wrapper around CodeNarc [https://codenarc.github.io/CodeNarc/].

	run_test.yml, which runs all junit4 [https://junit.org/junit4/] tests.

	qube_lint.yml, which runs QUBE’s linting on the project.

	pr_to_master_from_development_only.yml which fails if the PR does not come from a release or hotfix branch

Usage

The main Maven [https://maven.apache.org/] commands such as mvn test, mvn verify, mvn package and more are used to test and package cli-java based projects.

service-java

Purpose

service-java is a base template for services, which are similar to commandline tools, but stay active until shutdown.

Design

service-java follows the standard Maven project layout.

├── AUTHORS.rst
├── CHANGELOG.rst
├── CODEOFCONDUCT.rst
├── .dependabot
│ └── config.yml
├── docs
│ ├── authors.rst
│ ├── changelog.rst
│ ├── codeofconduct.rst
│ ├── conf.py
│ ├── index.rst
│ ├── installation.rst
│ ├── make.bat
│ ├── Makefile
│ ├── readme.rst
│ ├── requirements.txt
│ └── usage.rst
├── .github
│ ├── ISSUE_TEMPLATE
│ │ ├── bug_report.md
│ │ ├── feature_request.md
│ │ └── general_question.md
│ ├── pull_request_template.md
│ └── workflows
│ ├── build_docs.yml
│ ├── build_package.yml
│ ├── java_checkstyle.yml
│ └── run_tests.yml
├── .gitignore
├── LICENSE
├── pom.xml
├── qube.cfg
├── .qube.yml
├── README.rst
├── .readthedocs.yml
├── src
│ ├── main
│ │ ├── java
│ │ │ └── life
│ │ │ └── qbic
│ │ │ └── gui
│ │ │ ├── SampleApplication.java
│ │ │ ├── SampleCommand.java
│ │ │ └── SampleEntryPoint.java
│ │ └── resources
│ │ ├── log4j2.xml
│ │ └── tool.properties
│ └── test
│ ├── java
│ │ └── life
│ │ └── qbic
│ │ └── gui
│ │ ├── SampleIntegrationTest.java
│ │ └── SampleTest.java
│ └── resources
│ ├── log4j2.xml
│ └── tool.properties
├── .travis.settings.xml
└── .travis.yml

If you are unfamiliar with specific files/file types, you may find them in our Newbie Guide to QBiC software.

Included frameworks/libraries

	Like all of QBiC’s JVM based projects, lib-java uses QBiC’s parent-pom [https://github.com/qbicsoftware/parent-poms].

	junit4 [https://junit.org/junit4/] is currently QBiC’s testing framework of choice.
If you require mocking for any integration tests or advanced command line tests, Mockito [https://site.mockito.org/] may be useful.

	Preconfigured ReadTheDocs [https://readthedocs.org/].

	Four Github workflows are shipped with the template

	build_docs.yml, which builds the ReadTheDocs [https://readthedocs.org/] documentation.

	build_package.yml, which builds the Maven [https://maven.apache.org/] based project.

	java_checkstyle.yml, which runs Checkstyle [https://checkstyle.sourceforge.io/] using Google’s Styleguides [https://github.com/checkstyle/checkstyle/blob/master/src/main/resources/google_checks.xml].

	run_test.yml, which runs all junit4 [https://junit.org/junit4/] tests.

	qube_lint.yml, which runs QUBE’s linting on the project.

	pr_to_master_from_development_only.yml which fails if the PR does not come from a release or hotfix branch

Usage

The main Maven [https://maven.apache.org/] commands such as mvn test, mvn verify, mvn package and more are used to test and package cli-java based projects.

 _static/plus.png

_static/file.png

_static/minus.png

_images/8dc3501157c5ff671d7b8b019c130628261cc413.png
QUBE

nav.xhtml

 Table of Contents

 		
 Welcome to qube’s documentation!

 		
 Features

 		
 Credits

 		
 Newbie Guide to QBiC software

 		
 Required tools for Java/Groovy development

 		
 1. Java

 		
 2. Maven

 		
 3. Other tools

 		
 What to do once you’ve generated your project using QUBE?

 		
 Write tests, check code coverage

 		
 Test your code locally

 		
 Testing other tools locally

 		
 Create a new GitHub repository for your new project

 		
 Secure your configuration files before pushing to Git

 		
 Check that everything worked in Travis-CI.com

 		
 Report generation using Maven

 		
 Provide encrypted information to Travis CI

 		
 Maven credentials

 		
 Using Vaadin Charts add-on in your portlet

 		
 Publish your first version

 		
 Change default branch

 		
 Dependabot

 		
 Read the docs

 		
 Github Actions

 		
 Installation

 		
 Stable release

 		
 From sources

 		
 General Usage

 		
 create

 		
 list

 		
 info

 		
 lint

 		
 bump-version

 		
 sync

 		
 config

 		
 upgrade

 		
 External Python based projects

 		
 Configure qube

 		
 qube config all

 		
 qube config general

 		
 qube config pat

 		
 Updating a personal access token

 		
 Viewing the current configuration

 		
 Create a project

 		
 Getting information about available templates

 		
 list

 		
 info

 		
 Linting your project

 		
 qube linting

 		
 Linting codes

 		
 General

 		
 Bumping the version of an existing project

 		
 Usage

 		
 Configuration

 		
 Syncing your project

 		
 Overview

 		
 Requirements for sync

 		
 How to use sync?

 		
 What command line options are available?

 		
 What happens when my project gets synced?

 		
 Configuring sync

 		
 Sync level

 		
 Blacklisting files

 		
 Upgrade qube

 		
 Github Support

 		
 Overview

 		
 Branches

 		
 Overview

 		
 Branch protection rules

 		
 Github Actions

 		
 Overview

 		
 pr_to_master_from_patch_release_only workflow

 		
 sync_project.yml

 		
 Secrets

 		
 Error Handling due to failed Github repo creation

 		
 Issue labels

 		
 Available templates

 		
 cli-java

 		
 Purpose

 		
 Design

 		
 Included frameworks/libraries

 		
 Usage

 		
 gui-java

 		
 Purpose

 		
 Design

 		
 Included frameworks/libraries

 		
 Usage

 		
 lib-java

 		
 Purpose

 		
 Design

 		
 Included frameworks/libraries

 		
 Usage

 		
 lib-groovy

 		
 Purpose

 		
 Design

 		
 Included frameworks/libraries

 		
 Usage

 		
 service-java

 		
 Purpose

 		
 Design

 		
 Included frameworks/libraries

 		
 Usage

 		
 portlet-groovy

 		
 Purpose

 		
 Design

 		
 Included frameworks/libraries

 		
 Usage

 		
 portlet-groovy-osgi

 		
 Purpose

 		
 Design

 		
 Included frameworks/libraries

 		
 Usage

 		
 Shared FAQ

 		
 How do I setup Read the Docs?

 		
 What is Dependabot and how do I set it up?

 		
 How do I add a new template?

 		
 Adding new templates

 		
 Template requirements

 		
 Step by step guide to adding new templates

 		
 Troubleshooting

 		
 Changelog

 		
 2.6.1 (2020-11-06)

 		
 2.6.0 (2020-10-27)

 		
 2.5.1 (2020-10-16)

 		
 2.5.0 (2020-10-06)

 		
 2.4.6 (2020-10-02)

 		
 2.4.5 (2020-10-02)

 		
 2.4.4 (2020-10-02)

 		
 2.4.3 (2020-10-01)

 		
 2.4.2 (2020-10-01)

 		
 2.4.1 (2020-10-01)

 		
 2.4.0 (2020-10-01)

 		
 2.3.0 (2020-09-28)

 		
 2.2.0 (2020-08-21)

 		
 2.1.0 (2020-08-21)

 		
 2.0.0 (2020-08-17)

 		
 1.4.1 (2020-05-23)

 		
 1.4.0 (2020-05-23)

 		
 1.3.2 (2020-05-22)

 		
 1.3.1 (2020-05-20)

 		
 1.3.0 (2020-05-20)

 		
 1.2.1 (2020-05-03)

 		
 1.2.0 (2020-05-03)

 		
 1.1.0 (2020-05-03)

 		
 1.0.0 (2020-05-03)

 		
 Credits

 		
 Development Lead

 		
 Contributors

 		
 Contributor Covenant Code of Conduct

 		
 Our Pledge

 		
 Our Standards

 		
 Our Responsibilities

 		
 Scope

 		
 Enforcement

 		
 Attribution

_images/bump_version_example.png
zethemaster /t/Exploding Springfield> qube bump-version 1.1.0

Run qube --help for an overview of all commands

Changing version number.
Current version is 1.0.0.
New version will be 1.1.0

Updating version number in ./.qube.yml
- version: 1.0.0-SNAPSHOT
+ version: 1.1.0-SNAPSHOT

Updating version number in ./docs/conf.py

- version = '1.0.0"
+ version ‘l.1.0"
- release 0.0'
+ release = '1.1.0"

Updating version number in ./pom.xml
- <version>1.0.0-SNAPSHOT</version>
+ <version>1.1.0-SNAPSHOT</version>

_images/info_example.png
zeth@master /t/Exploding Springfield> qube info cli-java

Available Libraries Version
cli-java A template for Java based tools, which provide a picocli 1.0.0
command line user interface to the user. QBiC's

command line library of choice is picocli
(httne://picocli infa/)

Java Commandline Tool

_images/list_example.png
zethemaster /t/Exploding Springfield> qube list

(
|
|
|
|
|
|

IN_/

Run qube --help for an overview of all commands

Run qube info for long descriptions of your template of interest
ALl available templates

Name Handle Short Description Available Libraries Versio
Java Commandline Tool cli-java Tools to be used using a console (e.g., postman-cli) picocli 1.0.0
Generic Java Library lib-java Generic library for Java based projects none 1.0.0
JavaFX based GUI gui-java JavaFX based graphical user interfaces for Java based projects JavaFX 1.0.0
Service service-java Service, which once started stays 'active’ until shutdown core-utils-lib 1.0.0
Portlet portlet-groovy Vaadin based portlet, which build the foundation of QBiC's web presence Vaadin 1.0.0

_images/linting_example.png
zeth@master /t/Exploding Springfield> qube lint .

Run qube --help for an overview of all commands

Running general linting
Running portlet-groovy linting

LINTING RESULTS

[+] 24 tests passed
11 0 tests had warnings
[x1 0 tests failed
Test passed:
https://cookietemple/linting/errors#l : File found: qube.cfg

https://cookietemple/linting/errors#l : File .qube.yml
https://cookietemple/linting/errors#l : File CODEOFCONDUCT. rst
https://cookietemple/linting/errors#l : File : README.rst
https://cookietemple/linting/errors#l : File CHANGELOG. rst
https://cookietemple/linting/errors#l : File LICENSE or LICENSE.md or LICENCE or LICENCE.md
https://cookietemple/linting/errors#l : File docs/index.rst
https://cookietemple/linting/errors#l : File docs/readne. rst

File
File

https://cookietemple/linting/errors#l
https://cookietemple/linting/errors#l

docs/changelog. rst
docs/installation.rst

https://cookietemple/linting/errors#l : File docs/usage. rst
https://cookietemple/linting/errors#l : File .travis.yml
https://cookietemple/linting/errors#l : File .travis.settings.xml
https://cookietemple/linting/errors#l : File .gitignore

File
File
File
File

https://cookietemple/linting/errors#l
https://cookietemple/linting/errors#l
https://cookietemple/linting/errors#l
https://cookietemple/linting/errors#l
https://cookietemple/linting/errors#l :
https://cookietemple/linting/errors#l
https://cookietemple/linting/errors#5
https://cookietemple/linting/errors#l
https://cookietemple/linting/errors#l
https://cookietemple/linting/errors#l

.dependabot/config.yml
.github/workflows/build_docs.yml
.github/ISSUE_TEMPLATE/bug_report.md
.github/ISSUE_TEMPLATE/feature_request.md
File .github/ISSUE_TEMPLATE/general_question.
File .github/pull_request_template.md
Versions were consistent over all files

File found: pom.xml

File found: .github/workflows/build_docs.yml

File found: .github/workflows/build_package.yml

